【題目】如圖所示,在ABCD中,E,F(xiàn)分別在BC,AD上,若想使四邊形AFCE為平行四邊形,須添加一個(gè)條件,這個(gè)條件可以是(

AF=CF;AE=CF;③∠BAE=FCD;④∠BEA=FCE。

A. ①或② B. ②或③ C. ③或④ D. ①或③或④

【答案】C

【解析】∵四邊形ABCD是平行四邊形,
ABCD,AB=CD,B=D,ADBC,AD=BC,
如果∠BAE=FCD,
ABE≌△DFC(ASA)
BE=DF,
AD-DF=BC-BE,
AF=CE,
AFCE,
∴四邊形AFCE是平行四邊形;(③正確)
如果∠BEA=FCE,
AECF,
AFCE,
∴四邊形AFCE是平行四邊形;(④正確)
故選C.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】有兩張相同的矩形紙片ABCDA′B′C′D′,其中AB=3,BC=8.

(1)若將其中一張矩形紙片ABCD沿著BD折疊,點(diǎn)A落在點(diǎn)E處(如圖1),設(shè)DEBC相交于點(diǎn)F,求BF的長(zhǎng);

(2)若將這兩張矩形紙片交叉疊放(如圖2),判斷四邊形MNPQ的形狀,并證明.四邊形MNPQ的最大面積是_________.(直接寫出結(jié)果)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線y=x+2與拋物線y=ax2+bx+6(a≠0)相交于A( , )和B(4,m),點(diǎn)P是線段AB上異于A、B的動(dòng)點(diǎn),過點(diǎn)P作PC⊥x軸于點(diǎn)D,交拋物線于點(diǎn)C.

(1)求拋物線的解析式;
(2)是否存在這樣的P點(diǎn),使線段PC的長(zhǎng)有最大值?若存在,求出這個(gè)最大值;若不存在,請(qǐng)說明理由;
(3)求△PAC為直角三角形時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀下列材料:

小明在一本課外讀物上看到一道有意思的數(shù)學(xué)題:例1、解不等式:,根據(jù)絕對(duì)值的幾何意義,到原點(diǎn)距離小于1的點(diǎn)在數(shù)軸上集中在-1+1之間,如圖:

所以,該不等式的解集為-1<x<1.

因此,不等式的解集為x<-1x>1.

根據(jù)以上方法小明繼續(xù)探究:例2:求不等式:的解集,即求到原點(diǎn)的距離大于2小于5的點(diǎn)的集合就集中在這樣的區(qū)域內(nèi),如圖:

所以,不等式的解集為-5<x<-22<x<5.

仿照小明的做法解決下面問題:

(1)不等式的解集為____________.

(2)不等式的解集是____________.

(3)求不等式的解集.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,長(zhǎng)方形的長(zhǎng)和寬分別是7cm3cm,分別繞著它的長(zhǎng)和寬所在的直線旋轉(zhuǎn)一周,回答下列問題:

(1)如圖(1),繞著它的寬所在的直線旋轉(zhuǎn)一周,所得到的是什么樣的幾何體?得到的幾何體的體積是多少?(π3.14)

(2)如圖(2),繞著它的長(zhǎng)所在的直線旋轉(zhuǎn)一周,所得到的是什么樣的幾何體?得到的幾何體的體積是多少?(π3.14)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,分別以△ABC的兩條邊為邊做平行四邊形,所做的平行四邊形有____ __個(gè);

平行四邊形第四個(gè)頂點(diǎn)的坐標(biāo)是 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,以扇形OAB的頂點(diǎn)O為原點(diǎn),半徑OB所在的直線為x軸,建立平面直角坐標(biāo)系,點(diǎn)B的坐標(biāo)為(2,0),若拋物線y= x2+k與扇形OAB的邊界總有兩個(gè)公共點(diǎn),則實(shí)數(shù)k的取值范圍是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知RtABC中,∠ACB=90°,CA=CB,DAC上一點(diǎn),EBC的延長(zhǎng)線上,且AE=BD,BD的延長(zhǎng)線與AE交于點(diǎn)F.試通過觀察、測(cè)量、猜想等方法來(lái)探索BFAE有何特殊的位置關(guān)系,并說明你猜想的正確性.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】順次連接四邊形各邊中點(diǎn),所得的圖形是__________。順次連接對(duì)角線______________的四邊形的各邊中點(diǎn)所得的圖形是矩形。順次連接對(duì)角線_________的四邊形的各邊中點(diǎn)所得的四邊形是菱形。順次連接對(duì)角線_________的四邊形的各邊中點(diǎn)所得的四邊形是正方形。

查看答案和解析>>

同步練習(xí)冊(cè)答案