如圖,已知點C是線段AD的中點,AB=10,BD=4,則BC=     .

7

解析試題分析:由AB=10,BD=4可求得AD的長,再根據(jù)線段中點的性質可得CD的長,從而得到結果.
∵AB=10,BD=4
∴AD=6cm
∵點C是線段AD的中點
∴CD=3cm
∴BC=7cm.
考點:比較線段的長短
點評:解題的關鍵是熟練掌握線段的中點把線段分成相等的兩條小線段,且都等于原線段的一半.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知點P是線段AB的黃金分割點,且AB=
5
+1
,則AP=
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知點C是線段AD的中點,AB=10cm,BD=4cm,則BC=
7
7
cm.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知點M是線段AB的中點,N是線段AM上的點,且滿足AN:MN=1:2,若AN=2cm,則線段AB=( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知點C是線段AB上一點,點M,N分別是線段AC,BC的中點,則MN=
1
2
AB,小明對這個問題做了進一步的探究,并得出了相應的結論:
(1)若點C是線段AB延長線上一點,其余條件不變,則MN=
1
2
AB;
(2)若點C是線段AB反向延長線上一點,其余條件不變,則MN=
1
2
AB.
在上述結論中(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知點C是線段AB的中點,且AC=3,則AB的長為( 。
A、
3
2
B、3
C、6
D、12

查看答案和解析>>

同步練習冊答案