14、已知過點(1,0)的直線與拋物線y=2x2僅有一個交點,寫出滿足該條件的直線解析式
y=8x-8或x=1或y=0
分析:設(shè)過點(1,0)的直線為y=kx+b,把(1,0)代入其中得k+b=0,又直線與拋物線y=2x2只有一個交點,那么它們組成的方程組只有一個實數(shù)解,那么關(guān)于x的方程的判別式為0,由此即可求出k和b.
解答:解:設(shè)過點(1,0)的直線為y=kx+b,
把(1,0)代入其中得k+b=0,
∴b=-k ①,
∴y=kx-k,
∵過點(1,0)的直線與拋物線y=2x2僅有一個交點,
∴kx-k=2x2的判別式為0,
即△=b2-4ac=k2-8k=0,∴k=8或k=0(不合題意,舍去),
∴當(dāng)k=8時,b=-8,
當(dāng)k=0時,b=0,
∴直線解析式為y=8x-8或x=1或y=0.
故填空答案:y=8x-8或x=1或y=0.
點評:此題主要考查了拋物線與直線的交點情況與它們解析式組成的方程組的解之間的關(guān)系,解題根據(jù)是利用它們之間的對應(yīng)關(guān)系列出關(guān)于待定系數(shù)的方程.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知過點(
3
2
,-
7
4
)的直線y=kx+b與x軸、y軸的交點分別為A、B,且經(jīng)過第一、三、四象限,它與拋物線y=x2-4x+3只有一個公共點.
(1)求k的值;
(2)設(shè)拋物線的頂點為P,求點P到直線AB的距離d.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

已知過點(1,0)的直線與拋物線y=2x2僅有一個交點,寫出滿足該條件的直線解析式______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009-2010學(xué)年浙江省杭州市翠苑中學(xué)九年級(上)期中數(shù)學(xué)試卷(解析版) 題型:填空題

已知過點(1,0)的直線與拋物線y=2x2僅有一個交點,寫出滿足該條件的直線解析式   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知過點(1,0)的直線與拋物線y=2x2僅有一個交點,寫出滿足該條件的直線解析式      。

查看答案和解析>>

同步練習(xí)冊答案