精英家教網 > 初中數學 > 題目詳情
已知:如圖,在△ABC中,AD是邊BC上得高,E為邊AC得中點,BC=14,AD=12,
求:(1)線段DC的長;
(2)tan∠EDC的值;
(3)求sin∠BAC.

【答案】分析:(1)根據,先求出AB的長,然后求得BD,從而得出線段DC的長;
(2)先判斷∠EDC=∠ECD,在Rt△ACD中,再求tan∠ECD的值,即tan∠EDC的值;
(3)根據三角形的面積,求出AB邊上的高,從而求得sin∠BAC.
解答:解:(1)∵,
=,
∵AD=12,
∴AB=15,
由勾股定理得,BD===9,
∵BC=14,
∴線段DC的長=14-9=5;

(2)∵E為邊AC的中點,AD是邊BC上的高,
∴AE=EC=DE,(直角三角形斜邊上的中線等于斜邊的一半)
∴DE=EC,
∴∠EDC=∠ECD,
∴tan∠EDC=tan∠ECD==;

(3)過點C作CF⊥AB,
∵S△ABC=BC•AD÷2=14×12÷2=84,
∴AB•CF÷2=84,
∴CF=,
∴sin∠BAC==×=
點評:本題考查了勾股定理、三角函數的定義以及三角形的面積.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

34、已知:如圖,在AB、AC上各取一點,E、D,使AE=AD,連接BD,CE,BD與CE交于O,連接AO,∠1=∠2,
求證:∠B=∠C.

查看答案和解析>>

科目:初中數學 來源: 題型:

(2013•啟東市一模)已知,如圖,在Rt△ABC中,∠C=90°,∠BAC的角平分線AD交BC邊于D.
(1)以AB邊上一點O為圓心,過A,D兩點作⊙O(不寫作法,保留作圖痕跡),再判斷直線BC與⊙O的位置關系,并說明理由;
(2)若(1)中的⊙O與AB邊的另一個交點為E,半徑為2,AB=6,求線段AD、AE與劣弧DE所圍成的圖形面積.(結果保留根號和π)《根據2011江蘇揚州市中考試題改編》

查看答案和解析>>

科目:初中數學 來源: 題型:

已知:如圖,在△ABC中,∠C=120°,邊AC的垂直平分線DE與AC、AB分別交于點D和點E.
(1)作出邊AC的垂直平分線DE;
(2)當AE=BC時,求∠A的度數.

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

已知:如圖,在AB、AC上各取一點E、D,使AE=AD,連接BD,CE,BD與CE交于O,連接AO,∠1=∠2,
求證:∠B=∠C.

查看答案和解析>>

科目:初中數學 來源:專項題 題型:證明題

已知:如圖,在AB、AC上各取一點,E、D,使AE=AD,連結BD,CE,BD與CE交于O,連結AO,
           ∠1=∠2;
求證:∠B=∠C

查看答案和解析>>

同步練習冊答案