【題目】如圖,這是某市部分簡圖,為了確定各建筑物的位置:

(1)請你以火車站為原點建立平面直角坐標(biāo)系.
(2)寫出市場的坐標(biāo)為;超市的坐標(biāo)為
(3)請將體育場為A、賓館為C和火車站為B看作三點用線段連起來,得△ABC,然后將此三角形向下平移4個單位長度,畫出平移后的△A1B1C1 , 并求出其面積.

【答案】
(1)解:如圖所示:


(2)(4,3);(2,﹣3)
(3)解:如圖所示:

△A1B1C1的面積=3×6﹣ ×2×2﹣ ×4×3﹣ ×6×1=7


【解析】(1)以火車站為原點建立直角坐標(biāo)系即可;(2)根據(jù)平面直角坐標(biāo)系寫出點的坐標(biāo)即可;(3)根據(jù)題目要求畫出三角形,利用矩形面積減去四周多余三角形的面積即可.
【考點精析】利用坐標(biāo)確定位置對題目進行判斷即可得到答案,需要熟知對于平面內(nèi)任一點P,過P分別向x軸,y軸作垂線,垂足分別在x軸,y軸上,對應(yīng)的數(shù)a,b分別叫點P的橫坐標(biāo)和縱坐標(biāo).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】株洲市城區(qū)參加2018年初中畢業(yè)會考的人數(shù)約為10600人,則數(shù)10600用科學(xué)記數(shù)法表示為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖:CD是⊙O的直徑,線段AB過圓心O,且OA=OB=, CD=2連接AC、ADBD、BC,AD、CB分別交⊙OEF.

(1)問四邊形CEDF是何種特殊四邊形?請證明你的結(jié)論;

(2)當(dāng)AC與⊙O相切時,四邊形CEDF是正方形嗎?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在“創(chuàng)文明城,迎省運會”合唱比賽中,10位評委給某隊的評分如下表所示,則下列說法正確的是( 。

成績(分)

9.2

9.3

9.4

9.5

9.6

人數(shù)

3

2

3

1

1

A. 中位數(shù)是9.4B. 中位數(shù)是9.35

C. 眾數(shù)是31D. 眾數(shù)是9.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)解方程:

(2)如圖,在⊙O中,OAOB,∠A=20°,求∠B的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若關(guān)于x的方程ax2+2x10有兩個實數(shù)根,則a的取值范圍是( 。

A. a1B. a≥﹣1a0C. a1a0D. a≥﹣1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形ABCD的邊長為5,對角線,點E在邊AB上,BE=2,點PAC上的一個動點,則PBPE的最小值為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】根據(jù)表中一次函數(shù)的自變量x與函數(shù)y的對應(yīng)值,可得p的值為( )

x

﹣2

0

1

y

3

p

0


A.1
B.﹣1
C.3
D.﹣3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將n個邊長都為1cm的正方形按如圖所示的方法擺放,點A1 , A2 , …,An分別是正方形對角線的交點,則n個正方形重疊形成的重疊部分的面積和為( )

A.cm2
B.cm2
C.cm2
D.( ncm2

查看答案和解析>>

同步練習(xí)冊答案