【題目】如圖,在正方形紙片ABCD中,對角線AC、BD交于點O,折疊正方形紙片ABCD,使AD落在BD上,點A恰好與BD上的點F重合.展開后,折痕DE分別交AB、AC于點E、G.連接GF.下列結論:①∠AGD=112.5°;②tan∠AED=2;③S△AGD=S△OGD;④四邊形AEFG是菱形;⑤BE=2OG.
其中正確結論的序號是( 。
A. ①②③④⑤ B. ①②③④ C. ①③④⑤ D. ①④⑤
【答案】D
【解析】∵在正方形紙片ABCD中,折疊正方形紙片ABCD,使AD落在BD上,點A恰好與BD上的點F重合,
∴∠GAD=45°,∠ADG=∠ADO=22.5°,
∴∠AGD=112.5°,
∴①正確.
∵tan∠AED=,AE=EF<BE,
∴AE<AB,
∴tan∠AED=>2,
∴②錯誤.
∵AG=FG>OG,△AGD與△OGD同高,
∴S△AGD>S△OGD,
∴③錯誤.
根據(jù)題意可得:AE=EF,AG=FG,
又∵EF∥AC,
∴∠FEG=∠AGE,
又∵∠AEG=∠FEG,
∴∠AEG=∠AGE,
∴AE=AG=EF=FG,
∴四邊形AEFG是菱形,
∴④正確.
∵在等腰直角三角形BEF和等腰直角三角形OFG中,BE2=2EF2=2GF2=2×2OG2,
∴BE=2OG.
∴⑤正確.
故其中正確結論的序號是:①④⑤.
故選:D.
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,在ABCD中,對角線AC,BD交于點O,AB⊥AC,AB=1,BC=.
(1)求平行四邊形ABCD的面積S□ABCD;
(2)求對角線BD的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,AB是⊙O的直徑,AD與⊙O相切于點A,DE與⊙O相切于點E,點C為DE延長線上一點,且CE=CB.
(1)求證:BC為⊙O的切線;
(2)若AB=4,AD=1,求線段CE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,拋物線y=ax2+bx﹣2與x軸交于點A(﹣1,0),B(4,0)兩點,與y軸交于點C,經過點B的直線交y軸于點E(0,2).
(1)求該拋物線的解析式;
(2)如圖2,過點A作BE的平行線交拋物線于另一點D,點P是拋物線上位于線段AD下方的一個動點,連結PA,EA,ED,PD,求四邊形EAPD面積的最大值;
(3)如圖3,連結AC,將△AOC繞點O逆時針方向旋轉,記旋轉中的三角形為△A′OC′,在旋轉過程中,直線OC′與直線BE交于點Q,若△BOQ為等腰三角形,請直接寫出點Q的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點是正方形的對角線上一點,于點,于點,連接.給出下列五個結論:①;②一定是等腰直角三角形;③一定是等腰三角形;④;⑤.其中正確結論的序號是( )
A. ①②③④B. ①②④⑤C. ②③④⑤D. ①③④⑤
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖是某學校草場一角,在長為b米,寬為a米的長方形場地中間,有并排兩個大小一樣的籃球場,兩個籃球場中間以及籃球場與長方形場地邊沿的距離都為c米.
(1)用代數(shù)式表示這兩個籃球場的占地面積.
(2)當a=30,b=40,c=3時,計算出一個籃球場的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】列方程解應用題:
甲、乙兩人同時從相距25千米的A地去B 地,甲騎車乙步行,甲的速度是乙的速度的3倍,甲到達B地停留40分鐘,然后從B地返回A地,在途中遇見乙,這時距他們出發(fā)的時間恰好3小時,求兩人的速度各是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一次函數(shù)y1=-x+b的圖象與反比例函數(shù)y2= (x>0)的圖象交于A、B兩點,與x軸交于點C,且點A的坐標為(1,2),點B的橫坐標為3.
(1)在第一象限內,當x取何值時,y1>y2?(根據(jù)圖直接寫出結果)
(2)求反比例函數(shù)的解析式及△AOB的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,∠AOB=90°.∠BOC=30°,OM平分∠AOC,ON平分∠BOC.
(1)求∠MON的度數(shù);
(2)若∠BOC=60°,其他條件不變,則∠MON= ;
(3)若∠AOB=α,其他條件不變,求∠MON的度數(shù);
(4)從上面的結果能看出什么規(guī)律?
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com