已知AB是⊙的直徑,弦AC平分,ADCD于D,BECD于E。
求證:⑴CD是⊙的切線;

⑴連結(jié)OC              …………………1′

∴ ∠OAC=∠OCA
∵  AC平分∠BAC
∴ ∠DAC=∠OAC
∴ ∠OCA=∠DAC        …………………2′
∴  AD∥OC 
∵  AD⊥CD
∴  OC⊥CD                                      …………………3′
∴  CD是⊙的切線                                …………………4′
⑵ 連結(jié)BC,延長AC交BE的延長線于M             …………………5′
∵  AD⊥DE     BE⊥DE
∴  AD∥BE
∴ ∠M=∠DAC
∵ ∠DAC=∠BAM
∴ ∠BAM=∠M
∴  BA="BM          "                                 …………………6′
∵  AB是直徑
∴ ∠ACB=90
∴  AC=MC
又 ∵ ∠M=∠DAC  ∠D=∠CEM   AC=MC
∴ 
∴   DC="EC                                        " …………………7′
(若用平行線分線段成比例定理證明,正確得分)
∴  ∠DAC=∠BCE   ∠ADC=∠CEB
∴ ADC~CEB                                  …………………8′
∴ 
∴  
∴                                 …………………9′
說明:本題還有其它證法,若正確合理得分。

解析

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知AB是⊙O的直徑,∠CAB=30°,過點C的⊙O的切線交AB延長線于D,若OD=4
3
,那么弦AC長等于
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知AB是⊙O的直徑,過點O作弦BC的平行線,交過點A的切線AP于點P,連接AC.
(1)求證:△ABC∽△POA;
(2)若OB=2,OP=
72
,求BC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知AB是⊙O的直徑,點C在⊙O上,直線CD與AB的延長線交于點D,∠COB=2∠DCB.精英家教網(wǎng)
(1)求證:CD是⊙O的切線;
(2)點E是
AB
的中點,CE交AB于點F,若AB=4,求EF•EC的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知AB是⊙O的直徑,AD切⊙O于點A,
EC
=
CB
.給出下列結(jié)論:
①BA⊥DA;②OC∥AE;③OD⊥AC;④∠EAC=
1
4
∠EOB.
其中正確的結(jié)論有
①②④
①②④
.(把你認為正確的結(jié)論的序號都填上)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知AB是⊙O的直徑,弧AC的度數(shù)是30°.如果⊙O的直徑為4,那么AC2等于( 。

查看答案和解析>>

同步練習(xí)冊答案