如圖13,直角梯形ABCD和正方形EFGC的邊BC、CG在同一條直線上,AD∥BC,AB⊥BC于點(diǎn)B,AD=4,AB=6,BC=8,直角梯形ABCD的面積與正方形EFGC的面積相等,將直角梯形ABCD沿BG向右平行移動(dòng),當(dāng)點(diǎn)C與點(diǎn)G重合時(shí)停止移動(dòng).設(shè)梯形與正方形重疊部分的面積為S.
(1)求正方形的邊長(zhǎng);
(2)設(shè)直角梯形ABCD的頂點(diǎn)C向右移動(dòng)的距離為x,求S與x的函數(shù)關(guān)系式;
(3)當(dāng)直角梯形ABCD向右移動(dòng)時(shí),它與正方形EFGC的重疊部分面積S能否等于直角梯形ABCD面積的一半?若能,請(qǐng)求出此時(shí)運(yùn)動(dòng)的距離x的值;若不能,請(qǐng)說(shuō)明理由.
解:(1).
設(shè)正方形邊長(zhǎng)為x,
∴x2=36.
∴x1=6, x2=-6(不合題意,舍去).
∴正方形的邊長(zhǎng)為6.
(2)①當(dāng)0≤x<4時(shí),重疊部分為△MCN.
過(guò)D作DH⊥BC于H,可得△MCN∽△DHN,
∴.
∴
∴.
∴.
、诋(dāng)4≤x≤6時(shí),重疊部分為直角梯形ECND.
.
∴S=6x-12.
(3)存在.
∵S梯形ABCD=36,當(dāng)0≤x<4時(shí),,
∴ (取正值)>4. ∴此時(shí)x值不存在.
當(dāng)4≤x≤6時(shí),S=6x-12,
∴. ∴x=5.
綜上所述,當(dāng)x=5時(shí),重疊部分面積S等于直角梯形的一半.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
1 |
2 |
3 |
1 |
3 |
10 |
A、2 | B、3 | C、4 | D、5 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
1 | 3 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖13,直角梯形ABCD和正方形EFGC的邊BC、CG在同一條直線上,AD∥BC,AB⊥BC于點(diǎn)B,AD=4,AB=6,BC=8,直角梯形ABCD的面積與正方形EFGC的面積相等,將直角梯形ABCD沿BG向右平行移動(dòng),當(dāng)點(diǎn)C與點(diǎn)G重合時(shí)停止移動(dòng).設(shè)梯形與正方形重疊部分的面積為S.
(1)求正方形的邊長(zhǎng);
(2)設(shè)直角梯形ABCD的頂點(diǎn)C向右移動(dòng)的距離為x,求S與x的函數(shù)關(guān)系式;
(3)當(dāng)直角梯形ABCD向右移動(dòng)時(shí),它與正方形EFGC的重疊部分面積S能否等于直角梯形ABCD面積的一半?若能,請(qǐng)求出此時(shí)運(yùn)動(dòng)的距離x的值;若不能,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com