已知關于x的一元二次方程x2+kx-1=0,
(1)求證:方程有兩個不相等的實數(shù)根;
(2)設方程的兩根分別為x1,x2,且滿足x1+x2=x1•x2,求k的值.
【答案】分析:當△>0時方程有兩個不相等的實數(shù)根,本題中△=k2-4×1×(-1)=k2+4>0.利用兩根之和公式、兩根之積公式與x1+x2=x1•x2聯(lián)立組成方程組,解方程組即可求出k的值.
解答:證明:(1)∵△=k2-4×1×(-1)
=k2+4>0.
∴原方程有兩個不相等的實數(shù)根.

解:(2)由根與系數(shù)的關系,得
x1+x2=-k,x1•x2=-1.
∵x1+x2=x1•x2,
∴-k=-1,
解得k=1.
點評:命題立意:考查一元二次方程根的判別式與根與系數(shù)的關系及推理論證能力.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

已知關于x的一元二次x2+(2k-3)x+k2=0的兩個實數(shù)根x1,x2且x1+x2=x1x2,求k的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知關于x的一元二次2x2-(2m2-1)x-m-4=0有一個實數(shù)根為
32

(1)求m的值;
(2)求已知方程所有不同的可能根的平方和.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知關于x的一元二次x2-6x+k+1=0的兩個實數(shù)根x1,x2,
1
x1
+
1
x2
=1
,則k的值是( 。
A、8B、-7C、6D、5

查看答案和解析>>

科目:初中數(shù)學 來源:第23章《一元二次方程》中考題集(23):23.3 實踐與探索(解析版) 題型:解答題

已知關于x的一元二次2x2-(2m2-1)x-m-4=0有一個實數(shù)根為
(1)求m的值;
(2)求已知方程所有不同的可能根的平方和.

查看答案和解析>>

科目:初中數(shù)學 來源:2007年全國中考數(shù)學試題匯編《一元二次方程》(04)(解析版) 題型:解答題

(2007•汕頭)已知關于x的一元二次2x2-(2m2-1)x-m-4=0有一個實數(shù)根為
(1)求m的值;
(2)求已知方程所有不同的可能根的平方和.

查看答案和解析>>

同步練習冊答案