(2012•丹東)已知:△ABC在坐標(biāo)平面內(nèi),三個(gè)頂點(diǎn)的坐標(biāo)分別為A(0,3),B(3,4),C(2,2).(正方形網(wǎng)格中,每個(gè)小正方形的邊長(zhǎng)是1個(gè)單位長(zhǎng)度)
(1)畫出△ABC向下平移4個(gè)單位得到的△A1B1C1,并直接寫出C1點(diǎn)的坐標(biāo);
(2)以點(diǎn)B為位似中心,在網(wǎng)格中畫出△A2BC2,使△A2BC2與△ABC位似,且位似比為2:1,并直接寫出C2點(diǎn)的坐標(biāo)及△A2BC2的面積.
分析:(1)根據(jù)網(wǎng)格結(jié)構(gòu),找出點(diǎn)A、B、C向下平移4個(gè)單位的對(duì)應(yīng)點(diǎn)A1、B1、C1的位置,然后順次連接即可,再根據(jù)平面直角坐標(biāo)系寫出點(diǎn)C1的坐標(biāo);
(2)延長(zhǎng)BA到A2,使AA2=AB,延長(zhǎng)BC到C2,使CC2=BC,然后連接A2C2即可,再根據(jù)平面直角坐標(biāo)系寫出C2點(diǎn)的坐標(biāo),利用△A2BC2所在的矩形的面積減去四周三個(gè)小直角三角形的面積,列式計(jì)算即可得解.
解答:解:(1)如圖,△A1B1C1即為所求,C1(2,-2);

(2)如圖,△A2BC2即為所求,C2(1,0),
△A2BC2的面積:
6×4-
1
2
×2×6-
1
2
×2×4-
1
2
×2×4
=24-6-4-4
=24-14
=10.
點(diǎn)評(píng):本題考查了利用位似變換作圖,利用平移變換作圖,以及網(wǎng)格內(nèi)三角形的面積的求解,根據(jù)網(wǎng)格結(jié)構(gòu)準(zhǔn)確找出對(duì)應(yīng)點(diǎn)的位置是解題的關(guān)鍵,網(wǎng)格內(nèi)的三角形的面積通常利用三角形所在的矩形的面積減去四周三個(gè)小直角三角形的面積,一定要熟練掌握并靈活運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2012•丹東)已知:點(diǎn)C、A、D在同一條直線上,∠ABC=∠ADE=α,線段BD、CE交于點(diǎn)M.
(1)如圖1,若AB=AC,AD=AE
①問線段BD與CE有怎樣的數(shù)量關(guān)系?并說明理由;
②求∠BMC的大。ㄓ忙帘硎荆;
(2)如圖2,若AB=BC=kAC,AD=ED=kAE,則線段BD與CE的數(shù)量關(guān)系為
BD=kCE
BD=kCE
,∠BMC=
90°-
1
2
α
90°-
1
2
α
(用α表示);
(3)在(2)的條件下,把△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)180°,在備用圖中作出旋轉(zhuǎn)后的圖形(要求:尺規(guī)作圖,不寫作法,保留作圖痕跡),連接EC并延長(zhǎng)交BD于點(diǎn)M.則∠BMC=
90°+
1
2
α
90°+
1
2
α
(用α表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•丹東)如圖,已知正方形ABCD的邊長(zhǎng)為4,點(diǎn)E、F分別在邊AB、BC上,且AE=BF=1,CE、DF交于點(diǎn)O.下列結(jié)論:①∠DOC=90°,②OC=OE,③tan∠OCD=
4
3
,④S△ODC=S四邊形BEOF中,正確的有( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•丹東)暴雨過后,某地遭遇山體滑坡,武警總隊(duì)派出一隊(duì)武警戰(zhàn)士前往搶險(xiǎn).半小時(shí)后,第二隊(duì)前去支援,平均速度是第一隊(duì)的1.5倍,結(jié)果兩隊(duì)同時(shí)到達(dá).已知搶險(xiǎn)隊(duì)的出發(fā)地與災(zāi)區(qū)的距離為90千米,兩隊(duì)所行路線相同,問兩隊(duì)的平均速度分別是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•丹東)已知拋物線y=ax2-2ax+c與y軸交于C點(diǎn),與x軸交于A、B兩點(diǎn),點(diǎn)A的坐標(biāo)是(-1,0),O是坐標(biāo)原點(diǎn),且|OC|=3|OA|
(1)求拋物線的函數(shù)表達(dá)式;
(2)直接寫出直線BC的函數(shù)表達(dá)式;
(3)如圖1,D為y軸的負(fù)半軸上的一點(diǎn),且OD=2,以O(shè)D為邊作正方形ODEF.將正方形ODEF以每秒1個(gè)單位的速度沿x軸的正方向移動(dòng),在運(yùn)動(dòng)過程中,設(shè)正方形ODEF與△OBC重疊部分的面積為s,運(yùn)動(dòng)的時(shí)間為t秒(0<t≤2).
求:①s與t之間的函數(shù)關(guān)系式;
②在運(yùn)動(dòng)過程中,s是否存在最大值?如果存在,直接寫出這個(gè)最大值;如果不存在,請(qǐng)說明理由.
(4)如圖2,點(diǎn)P(1,k)在直線BC上,點(diǎn)M在x軸上,點(diǎn)N在拋物線上,是否存在以A、M、N、P為頂點(diǎn)的平行四邊形?若存在,請(qǐng)直接寫出M點(diǎn)坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案