如圖,在△ABC中,AB=AC,∠A=60°,BE⊥AC于E,延長BC到D,使CD=CE,連接DE,若△ABC的周長是24,BE=a,則△BDE的周長是
2a+12
2a+12
分析:根據(jù)在△ABC中,AB=AC,∠A=60°,可得△ABC的形狀,再根據(jù)△ABC的周長是24,可得AB=BC=AC=8,根據(jù)BE⊥AC于E,可得CE的長,∠EBC=30°,根據(jù)CD=CE,可得∠D=∠CED,根據(jù)∠ACB=60°,可得∠D,根據(jù)∠D與∠EBC,可得BE與DE的關系,可得答案.
解答:解:∵在△ABC中,AB=AC,∠A=60°,
∴△ABC是等邊三角形,
∵△ABC的周長是24,
∴AB=AC=BC=8,
∵BE⊥AC于E,
∴CE=
1
2
AC=4,∠EBC=
1
2
∠ABC=30°,
∵CD=CE,
∴∠D=∠CED,
∵∠ACB是△CDE的一個外角,
∴∠D+∠CED=∠ACB=60°
∴∠D=30°,
∴∠D=∠EBC,
∴BE=DE=a,
∴△BED周長是DE+BE+BD=a+a+(8+4)=2a+12,
故答案為:2a+12.
點評:本題考查了等腰三角形的判定與性質(zhì),有一個角是60°的等腰三角形是等邊三角形,等腰三角形的性質(zhì):等邊對等角,等腰三角形的判定:等角對等邊..
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

20、如圖,在△ABC中,∠BAC=45°,現(xiàn)將△ABC繞點A逆時針旋轉(zhuǎn)30°至△ADE的位置,使AC⊥DE,則∠B=
75
度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,∠ACB=90°,AC=BC=1,取斜邊的中點,向斜邊作垂線,畫出一個新的等腰三角形,如此繼續(xù)下去,直到所畫出的直角三角形的斜邊與△ABC的BC重疊,這時這個三角形的斜邊為
( 。
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

2、如圖,在△ABC中,DE∥BC,那么圖中與∠1相等的角是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

14、如圖,在△ABC中,AB=BC,邊BC的垂直平分線分別交AB、BC于點E、D,若BC=10,AC=6cm,則△ACE的周長是
16
cm.

查看答案和解析>>

同步練習冊答案