如圖,△ABC內(nèi)接于⊙O,CA=CB,CD∥AB且與OA的延長線交于點D.

(1)判斷CD與⊙O的位置關系并說明理由;

(2)若∠ACB=120°,OA=2,求CD的長.

(3)在(2)條件下求圖中的陰影部分面積。(結果可含

 

【答案】

1)CD與⊙O相切,證明略;  3分

(2) ;2分

(3)。3分

【解析】(1)連接OC,證明OC⊥DC,利用經(jīng)過半徑的外端且垂直于半徑的直線是圓的切線判定切線即可;

(2)利用等弧所對的圓心角相等和題目中的已知角得到∠D=30°,利用解直角三角形求得CD的長即可.

(3)根據(jù)陰影部分的面積=三角形ADC的面積+(扇形OCB的面積-三角形OCB的面積),利用三角形的面積公式及扇形的面積公式計算即可得到陰影部分的面積

 

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

15、如圖,△ABC內(nèi)接于⊙O,∠BAC=120°,AB=AC=4.BD為⊙O的直徑,則BD=
8

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

21、如圖,△ABC內(nèi)接于⊙O,AB為⊙O的直徑,點D在AB的延長線上,∠A=∠D=30°.
(1)判斷DC是否為⊙O的切線,并說明理由;
(2)證明:△AOC≌△DBC.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)已知:如圖,△ABC內(nèi)接于⊙O,連接AO并延長交BC于點D,若AO=5,BC=8,∠ADB=90°,求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

18、如圖,△ABC內(nèi)接于⊙O,∠A=30°,若BC=4cm,則⊙O的直徑為(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,△ABC內(nèi)接于⊙O,AD⊥BC于點D,求證:∠BAD=∠CAO.

查看答案和解析>>

同步練習冊答案