一般地,“任意三角形都是自相似圖形”,只要順次連接三角形各邊中點,則可將原三角形分割為四個都與它自己相似的小三角形.我們把△DEF(圖乙)第一次順次連接各邊中點所進行的分割,稱為1階分割(如圖1);把1階分割得出的4個三角形再分別順次連接它的各邊中點所進行的分割,稱為2階分割(如圖2)…,依此規(guī)則操作下去.n階分割后得到的每一個小三角形都是全等三角形(n為正整數(shù)),設此時小三角形的面積為Sn.請寫出一個反映Sn-1,Sn,Sn+1(n>1)之間關系的等式
 
精英家教網(wǎng)
分析:1階三角形有4個,把這4個三角形再分,每個分成4個,即共有42個三角形,即2階三角形有42個三角形,進而可以得到n階三角形有4n個三角形.
解答:解:設△DEF的面積是a
則Sn-1=
a
4n-1
,Sn=
a
4n
,Sn+1=
a
4n+1

根據(jù)(
a
4n
)
2
=
a
4n-1
a
4n+1

因而Sn-1,Sn,Sn+1三者之間關系式是Sn2=Sn-1•Sn+1
∴三者之間關系式是Sn2=Sn-1•Sn+1
點評:這是一個猜想規(guī)律的問題,解題的關鍵是根據(jù)規(guī)律,能判斷出n階分割后小三角形的個數(shù).
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)定義:若某個圖形可分割為若干個都與他相似的圖形,則稱這個圖形是自相似圖形.
探究:
(1)如圖甲,已知△ABC中∠C=90°,你能把△ABC分割成2個與它自己相似的小直角三角形嗎?若能,請在圖甲中畫出分割線,并說明理由.
(2)一般地,“任意三角形都是自相似圖形”,只要順次連接三角形各邊中點,則可將原三分割為四個都與它自己相似的小三角形.我們把△DEF(圖乙)第一次順次連接各邊中點所進行的分割,稱為1階分割(如圖1);把1階分割得出的4個三角形再分別順次連接它的各邊中點所進行的分割,稱為2階分割(如圖2)…依次規(guī)則操作下去.n階分割后得到的每一個小三角形都是全等三角形(n為正整數(shù)),設此時小三角形的面積為SN
①若△DEF的面積為10000,當n為何值時,2<Sn<3?(請用計算器進行探索,要求至少寫出三次的嘗試估算過程)
②當n>1時,請寫出一個反映Sn-1,Sn,Sn+1之間關系的等式.(不必證明)精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•慶元縣模擬)定義:若某個圖形可分割為若干個都與他相似的圖形,則稱這個圖形是自相似圖形.
探究:(1)如圖甲,已知△ABC中∠C=90°,你能把△ABC分割成2個與它自己相似的小直角三角形嗎?若能,請在圖甲中畫出分割線,并說明理由.
(2)一般地,“任意三角形都是自相似圖形”,只要順次連接三角形各邊中點,則可將原三分割為四個都與它自己相似的小三角形.我們把△DEF(圖乙)第一次順次連接各邊中點所進行的分割,稱為1階分割(如圖1);把1階分割得出的4個三角形再分別順次連接它的各邊中點所進行的分割,稱為2階分割(如圖2)…依次規(guī)則操作下去.n階分割后得到的每一個小三角形都是全等三角形(n為正整數(shù)),設此時小三角形的面積為Sn
①若△DEF的面積為1000,當n為何值時,3<Sn<4?
(請用計算器進行探索,要求至少寫出二次的嘗試估算過程)
②當n>1時,請寫出一個反映Sn-1,Sn,Sn+1之間關系的等式(不必證明)

查看答案和解析>>

科目:初中數(shù)學 來源:2012屆浙江省麗水市慶元縣中考模擬數(shù)學試卷(帶解析) 題型:解答題

定義:若某個圖形可分割為若干個都與他相似的圖形,則稱這個圖形是自相似圖形.
探究:(1)如圖甲,已知△ABC中∠C=90°,你能把△ABC分割成2個與它自己相似的小直角三角形嗎?若能,請在圖甲中畫出分割線,并說明理由.
(2)一般地,“任意三角形都是自相似圖形”,只要順次連結三角形各邊中點,則可將原三分割為四個都與它自己相似的小三角形.我們把△DEF(圖乙)第一次順次連結各邊中點所進行的分割,稱為1階分割(如圖1);把1階分割得出的4個三角形再分別順次連結它的各邊中點所進行的分割,稱為2階分割(如圖2)……依次規(guī)則操作下去.n階分割后得到的每一個小三角形都是全等三角形(n為正整數(shù)),設此時小三角形的面積為Sn
①若△DEF的面積為1000,當n為何值時,3<Sn<4?
(請用計算器進行探索,要求至少寫出二次的嘗試估算過程)
②當n>1時,請寫出一個反映Sn-1,Sn,Sn+1之間關系的等式(不必證明)

查看答案和解析>>

科目:初中數(shù)學 來源:2011-2012學年浙江省麗水市慶元縣中考模擬數(shù)學試卷(解析版) 題型:解答題

定義:若某個圖形可分割為若干個都與他相似的圖形,則稱這個圖形是自相似圖形.

探究:(1)如圖甲,已知△ABC中∠C=90°,你能把△ABC分割成2個與它自己相似的小直角三角形嗎?若能,請在圖甲中畫出分割線,并說明理由.

(2)一般地,“任意三角形都是自相似圖形”,只要順次連結三角形各邊中點,則可將原三分割為四個都與它自己相似的小三角形.我們把△DEF(圖乙)第一次順次連結各邊中點所進行的分割,稱為1階分割(如圖1);把1階分割得出的4個三角形再分別順次連結它的各邊中點所進行的分割,稱為2階分割(如圖2)……依次規(guī)則操作下去.n階分割后得到的每一個小三角形都是全等三角形(n為正整數(shù)),設此時小三角形的面積為Sn

①若△DEF的面積為1000,當n為何值時,3<Sn<4?

(請用計算器進行探索,要求至少寫出二次的嘗試估算過程)

②當n>1時,請寫出一個反映Sn-1,Sn,Sn+1之間關系的等式(不必證明)

 

查看答案和解析>>

同步練習冊答案