4.實(shí)數(shù)a,b互為相反數(shù),c,d互為倒數(shù),x的絕對(duì)值為√3,求代數(shù)式{x^2}+({a+b+cd})x+\sqrt{a+b}+\root{3}{cd}的值.
分析 先根據(jù)a、b互為相反數(shù),c、d互為倒數(shù),x的絕對(duì)值得出a+b=0,cd=1,x=±√3,再代入代數(shù)式進(jìn)行計(jì)算即可.
解答 解:∵a、b互為相反數(shù),c、d互為倒數(shù),x的絕對(duì)值為√3,
∴a+b=0,cd=1,x=±√3,
當(dāng)x=√3時(shí),原式=3+(0+1)×√3+0+1=4+√3;
當(dāng)x=-√3時(shí),原式=3+(0+1)×(-√3)+0+1=4-√3,
∴代數(shù)式{x^2}+({a+b+cd})x+\sqrt{a+b}+\root{3}{cd}的值為4+√3或4−√3.
點(diǎn)評(píng) 本題考查的是實(shí)數(shù)的運(yùn)算,熟知相反數(shù)及倒數(shù)的定義是解答此題的關(guān)鍵.