(2003•福州)下列命題中,是真命題的是( )
A.如果兩個角相等,那么這兩個角是對頂角
B.兩條對角線相等的四邊形是矩形
C.線段垂直平分線上的點和這條線段兩個端點的距離相等
D.如果兩個圓相交,那么這兩個圓有三條公切線
【答案】分析:本題綜合性比較強.根據(jù)四邊形的判定方法,以及兩圓的不同的位置關系中,公切線的條數(shù)分析.
解答:解:A中,顯然相等的角不一定都是對頂角.錯誤;
B中,還得互相平分.錯誤;
C中,這是線段垂直平分線的性質,正確;
D中,應有2條公切線.錯誤.
故選C.
點評:此類題的知識綜合性比較強.熟悉特殊四邊形的判定方法;以及兩圓的不同的位置關系中,公切線的條數(shù).
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2003年全國中考數(shù)學試題匯編《二次函數(shù)》(05)(解析版) 題型:解答題

(2003•福州)已知:如圖,二次函數(shù)y=2x2-2的圖象與x軸交于A、B兩點(點A在點B的左邊),與y軸交于點C,直線x=m(m>1)與x軸交于點D.
(1)求A、B、C三點的坐標;
(2)在直線x=m(m>1)上有一點P(點P在第一象限),使得以P、D、B為頂點的三角形與以B、C、O為頂點的三角形相似,求P點坐標(用含m的代數(shù)式表示);
(3)在(2)成立的條件下,試問:拋物線y=2x2-2上是否存在一點Q,使得四邊形ABPQ為平行四邊形?如果存在這樣的點Q,請求出m的值;如果不存在,請簡要說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年山東省東營市中考模擬考試五校聯(lián)考數(shù)學試卷(解析版) 題型:解答題

(2003•福州)已知:如圖,二次函數(shù)y=2x2-2的圖象與x軸交于A、B兩點(點A在點B的左邊),與y軸交于點C,直線x=m(m>1)與x軸交于點D.
(1)求A、B、C三點的坐標;
(2)在直線x=m(m>1)上有一點P(點P在第一象限),使得以P、D、B為頂點的三角形與以B、C、O為頂點的三角形相似,求P點坐標(用含m的代數(shù)式表示);
(3)在(2)成立的條件下,試問:拋物線y=2x2-2上是否存在一點Q,使得四邊形ABPQ為平行四邊形?如果存在這樣的點Q,請求出m的值;如果不存在,請簡要說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年江西省師大附中(南昌市三校)九年級(下)第二次聯(lián)考數(shù)學試卷(解析版) 題型:解答題

(2003•福州)已知:如圖,二次函數(shù)y=2x2-2的圖象與x軸交于A、B兩點(點A在點B的左邊),與y軸交于點C,直線x=m(m>1)與x軸交于點D.
(1)求A、B、C三點的坐標;
(2)在直線x=m(m>1)上有一點P(點P在第一象限),使得以P、D、B為頂點的三角形與以B、C、O為頂點的三角形相似,求P點坐標(用含m的代數(shù)式表示);
(3)在(2)成立的條件下,試問:拋物線y=2x2-2上是否存在一點Q,使得四邊形ABPQ為平行四邊形?如果存在這樣的點Q,請求出m的值;如果不存在,請簡要說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2009年浙江省杭州市蕭山區(qū)中考模擬數(shù)學試卷(高橋初中2 鐘玲芳)(解析版) 題型:解答題

(2003•福州)已知:如圖,二次函數(shù)y=2x2-2的圖象與x軸交于A、B兩點(點A在點B的左邊),與y軸交于點C,直線x=m(m>1)與x軸交于點D.
(1)求A、B、C三點的坐標;
(2)在直線x=m(m>1)上有一點P(點P在第一象限),使得以P、D、B為頂點的三角形與以B、C、O為頂點的三角形相似,求P點坐標(用含m的代數(shù)式表示);
(3)在(2)成立的條件下,試問:拋物線y=2x2-2上是否存在一點Q,使得四邊形ABPQ為平行四邊形?如果存在這樣的點Q,請求出m的值;如果不存在,請簡要說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2009年浙江省杭州市蕭山區(qū)中考模擬數(shù)學試卷(高橋初中 莊璐)(解析版) 題型:解答題

(2003•福州)已知:如圖,二次函數(shù)y=2x2-2的圖象與x軸交于A、B兩點(點A在點B的左邊),與y軸交于點C,直線x=m(m>1)與x軸交于點D.
(1)求A、B、C三點的坐標;
(2)在直線x=m(m>1)上有一點P(點P在第一象限),使得以P、D、B為頂點的三角形與以B、C、O為頂點的三角形相似,求P點坐標(用含m的代數(shù)式表示);
(3)在(2)成立的條件下,試問:拋物線y=2x2-2上是否存在一點Q,使得四邊形ABPQ為平行四邊形?如果存在這樣的點Q,請求出m的值;如果不存在,請簡要說明理由.

查看答案和解析>>

同步練習冊答案