【題目】如圖,OP為∠AOB的角平分線,PC⊥OA,PD⊥OB,垂足分別是C,D,則下列結(jié)論錯(cuò)誤的是(  )
A.PC=PD
B.∠CPD=∠DOP
C.∠CPO=∠DPO
D.OC=OD

【答案】B
【解析】解:∵OP為∠AOB的角平分線,PC⊥OA,PD⊥OB,垂足分別是C、D, ∴PC=PD,故A正確;
在Rt△OCP與Rt△ODP中,

∴△OCP≌△ODP,
∴∠CPO=∠DPO,OC=OD,故C、D正確.
不能得出∠CPD=∠DOP,故B錯(cuò)誤.
故選B.
先根據(jù)角平分線的性質(zhì)得出PC=PD,再利用HL證明△OCP≌△ODP,根據(jù)全等三角形的性質(zhì)得出∠CPO=∠DPO,OC=OD.本題考查了角平分線的性質(zhì):角的平分線上的點(diǎn)到角的兩邊的距離相等.也考查了全等三角形的判定與性質(zhì),得出PC=PD是解題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,D為⊙O上一點(diǎn),點(diǎn)C在直徑BA的延長(zhǎng)線上,且∠CDA=∠CBD.

(1)求證:CD是⊙O的切線;
(2)過(guò)點(diǎn)B作⊙O的切線交CD的延長(zhǎng)線于點(diǎn)E,BC=6, .求BE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若關(guān)于x的方程2x2+x﹣a=0有兩個(gè)不相等的實(shí)數(shù)根,則實(shí)數(shù)a的取值范圍是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某景點(diǎn)試開(kāi)放期間,團(tuán)隊(duì)收費(fèi)方案如下:不超過(guò)30人時(shí),人均收費(fèi)120元;超過(guò)30人且不超過(guò)m(30<m≤100)人時(shí),每增加1人,人均收費(fèi)降低1元;超過(guò)m人時(shí),人均收費(fèi)都按照m人時(shí)的標(biāo)準(zhǔn).設(shè)景點(diǎn)接待有x名游客的某團(tuán)隊(duì),收取總費(fèi)用為y元.
(1)求y關(guān)于x的函數(shù)表達(dá)式;
(2)景點(diǎn)工作人員發(fā)現(xiàn):當(dāng)接待某團(tuán)隊(duì)人數(shù)超過(guò)一定數(shù)量時(shí),會(huì)出現(xiàn)隨著人數(shù)的增加收取的總費(fèi)用反而減少這一現(xiàn)象.為了讓收取的總費(fèi)用隨著團(tuán)隊(duì)中人數(shù)的增加而增加,求m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在大課間活動(dòng)中,體育老師隨機(jī)抽取了七年級(jí)甲、乙兩班部分女學(xué)生進(jìn)行仰臥起坐的測(cè)試,并對(duì)成績(jī)進(jìn)行統(tǒng)計(jì)分析,繪制了頻數(shù)分布表和統(tǒng)計(jì)圖,請(qǐng)你根據(jù)圖表中的信息完成下列問(wèn)題:

頻數(shù)

頻率

第一組(0≤x<15)

3

0.15

第二組(15≤x<30)

6

a

第三組(30≤x<45)

7

0.35

第四組(45≤x<60)

b

0.20


(1)頻數(shù)分布表中a= , b= , 并將統(tǒng)計(jì)圖補(bǔ)充完整;
(2)如果該校七年級(jí)共有女生180人,估計(jì)仰臥起坐能夠一分鐘完成30或30次以上的女學(xué)生有多少人?
(3)已知第一組中只有一個(gè)甲班學(xué)生,第四組中只有一個(gè)乙班學(xué)生,老師隨機(jī)從這兩個(gè)組中各選一名學(xué)生談心得體會(huì),則所選兩人正好都是甲班學(xué)生的概率是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩人都握有分別標(biāo)記為A、B、C的三張牌,兩人做游戲,游戲規(guī)則是:若兩人出的牌不同,則A勝B,B勝C,C勝A;若兩人出的牌相同,則為平局.
(1)用樹狀圖或列表等方法,列出甲、乙兩人一次游戲的所有可能的結(jié)果;
(2)求出現(xiàn)平局的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線y= x+ 與兩坐標(biāo)軸分別交于A、B兩點(diǎn).
(1)求∠ABO的度數(shù);
(2)過(guò)A的直線l交x軸半軸于C,AB=AC,求直線l的函數(shù)解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某班數(shù)學(xué)興趣小組利用數(shù)學(xué)活動(dòng)課時(shí)間測(cè)量位于烈山山頂?shù)难椎鄣裣窀叨龋阎疑狡旅媾c水平面的夾角為30°,山高857.5尺,組員從山腳D處沿山坡向著雕像方向前進(jìn)1620尺到達(dá)E點(diǎn),在點(diǎn)E處測(cè)得雕像頂端A的仰角為60°,求雕像AB的高度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,線段AB的長(zhǎng)為2,C為AB上一個(gè)動(dòng)點(diǎn),分別以AC、BC為斜邊在AB的同側(cè)作兩個(gè)等腰直角三角形△ACD和△BCE,那么DE長(zhǎng)的最小值是

查看答案和解析>>

同步練習(xí)冊(cè)答案