11.閱讀下列材料,完成相應(yīng)學(xué)習(xí)任務(wù):
四點共圓的條件
我們知道,過任意一個三角形的三個頂點能作一個圓,過任意一個四邊形的四個頂點能作一個圓嗎?小明經(jīng)過實踐探究發(fā)現(xiàn):過對角互補(bǔ)的四邊形的四個頂點能作一個圓,下面是小明運(yùn)用反證法證明上述命題的過程:
已知:在四邊形ABCD中,∠B+∠D=180°.
求證:過點A、B、C、D可作一個圓.
證明:如圖(1),假設(shè)過點A、B、C、D四點不能作一個圓,過A、B、C三點作圓,若點D在圓外,設(shè)AD與圓相交于點E,連接CE,則∠B+∠AEC=180°,而已知∠B+∠D=180°,所以∠AEC=∠D,而∠AEC是△CED的外角,∠AEC>∠D,出現(xiàn)矛盾,故假設(shè)不成立,因此點D在過A、B、C三點的圓上.
如圖(2)假設(shè)過點A、B、C、D四點不能作一個圓,過A、B、C三點作圓,若點D在圓內(nèi),設(shè)AD的延長線與圓相交于點E,連接CE,則∠B+∠AEC=180°,而已知∠B+∠ADCA=180°,所以∠AEC=∠ADC,而∠ADC是△CED的外角,∠ADC>∠AEC,出現(xiàn)矛盾,故假設(shè)不成立,因此點D在過A、B、C三點的圓上.
因此得到四點共圓的條件:過對角互補(bǔ)的四邊形的四個頂點能作一個圓.
學(xué)習(xí)任務(wù):
(1)材料中劃線部分結(jié)論的依據(jù)是圓的內(nèi)接四邊形對角互補(bǔ).
(2)證明過程中主要體現(xiàn)了下列哪種數(shù)學(xué)思想:D(填字母代號即可)
A、函數(shù)思想 B、方程思想 C、數(shù)形結(jié)合思想 D、分類討論思想
(3)如圖(3),在四邊形ABCD中,∠ABC=∠ADC=90°,∠CAD=16°.AD=BD,則求∠ADB的大。