【題目】如圖1,一次函數(shù)y=kx﹣3(k≠0)的圖象與y軸交于點A,與反比例函數(shù)y= (x>0)的圖象交于點B(4,b).
(1)b=;k=;
(2)點C是線段AB上的動點(與點A、B不重合),過點C且平行于y軸的直線l交這個反比例函數(shù)的圖象于點D,求△OCD面積的最大值;
(3)將(2)中面積取得最大值的△OCD沿射線AB方向平移一定的距離,得到△O′C′D′,若點O的對應(yīng)點O′落在該反比例函數(shù)圖象上(如圖2),則點D′的坐標是 .
【答案】
(1)1;1
(2)
解:設(shè)C(m,m﹣3)(0<m<4),則D(m, ),
∴S△OCD= m( ﹣m+3)=﹣ m2+ m+2=﹣ + ,
∵0<m<4,﹣ <0,
∴當m= 時,△OCD面積取最大值,最大值為
(3)( , )
【解析】解:(1)把B(4,b)代入y= (x>0)中得:b= =1,
∴B(4,1),
把B(4,1)代入y=kx﹣3得:1=4k﹣3,解得:k=1,
所以答案是:1,1;
3)由(1)知一次函數(shù)的解析式為y=x﹣3,
由(2)知C( ,﹣ )、D( , ).
設(shè)C′(a,a﹣3),則O′(a﹣ ,a﹣ ),D′(a,a+ ),
∵點O′在反比例函數(shù)y= (x>0)的圖象上,
∴a﹣ = ,解得:a= 或a=﹣ (舍去),
經(jīng)檢驗a= 是方程a﹣ = 的解.
∴點D′的坐標是( , ).
【考點精析】解答此題的關(guān)鍵在于理解一次函數(shù)的性質(zhì)的相關(guān)知識,掌握一般地,一次函數(shù)y=kx+b有下列性質(zhì):(1)當k>0時,y隨x的增大而增大(2)當k<0時,y隨x的增大而減小,以及對一次函數(shù)的圖象和性質(zhì)的理解,了解一次函數(shù)是直線,圖像經(jīng)過仨象限;正比例函數(shù)更簡單,經(jīng)過原點一直線;兩個系數(shù)k與b,作用之大莫小看,k是斜率定夾角,b與Y軸來相見,k為正來右上斜,x增減y增減;k為負來左下展,變化規(guī)律正相反;k的絕對值越大,線離橫軸就越遠.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某區(qū)共有甲、乙、丙三所高中,所有高二學(xué)生參加了一次數(shù)學(xué)測試.老師們對其中的一道題進行了分析,把每個學(xué)生的解答情況歸結(jié)為下列四類情況之一:A﹣﹣概念錯誤;B﹣﹣計算錯誤;C﹣﹣解答基本正確,但不完整;D﹣﹣解答完全正確.各校出現(xiàn)這四類情況的人數(shù)分別占本校高二學(xué)生數(shù)的百分比如下表所示.
A | B | C | D | |
甲校(%) | 2.75 | 16.25 | 60.75 | 20.25 |
乙校(%) | 3.75 | 22.50 | 41.25 | 32.50 |
丙校(%) | 12.50 | 6.25 | 22.50 | 58.75 |
已知甲校高二有400名學(xué)生,這三所學(xué)校高二學(xué)生人數(shù)的扇形統(tǒng)計圖如圖.
根據(jù)以上信息,解答下列問題:
(1)求全區(qū)高二學(xué)生總數(shù);
(2)求全區(qū)解答完全正確的學(xué)生數(shù)占全區(qū)高二學(xué)生總數(shù)的百分比m(精確到0.01%);
(3)請你對表中三校的數(shù)據(jù)進行對比分析,給丙校高二數(shù)學(xué)老師提一個值得關(guān)注的問題,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校初三(1)班 名學(xué)生需要參加體育“五選一”自選項目測試,班上學(xué)生所報自選項目的情況統(tǒng)計表如下:
自選項目 | 人數(shù) | 頻率 |
立定跳遠 | 9 | 0.18 |
三級蛙跳 | 12 | |
一分鐘跳繩 | 8 | 0.16 |
投擲實心球 | 0.32 | |
推鉛球 | 5 | 0.1 |
合計 | 50 | 1 |
(1)求 的值;
(2)若將各自選項目的人數(shù)所占比例繪制成扇形統(tǒng)計圖,求“一分鐘跳繩”對應(yīng)扇形的圓心角的度數(shù);
(3)在選報“推鉛球”的學(xué)生中,有3名男生,2名女生.為了了解學(xué)生的訓(xùn)練效果,從這5名學(xué)生中隨機抽取兩名學(xué)生進行推鉛球測試,求所抽取的兩名學(xué)生中至多有一名女生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系中,坐標原點O是正方形OABC的一個頂點,已知點B坐標為(1,7),過點P(a,0)(a>0)作PE⊥x軸,與邊OA交于點E(異于點O、A),將四邊形ABCE沿CE翻折,點A′、B′分別是點A、B的對應(yīng)點,若點A′恰好落在直線PE上,則a的值等于( )
A.
B.
C.2
D.3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】李師傅加工1個甲種零件和1個乙種零件的時間分別是固定的,現(xiàn)知道李師傅加工3個甲種零件和5個乙種零件共需55分鐘;加工4個甲種零件和9個乙種零件共需85分鐘,則李師傅加工2個甲種零件和4個乙種零件共需分鐘.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC中,∠ABC=90°
(1)尺規(guī)作圖:按下列要求完成作圖(保留作圖痕跡,請標明字母) ①作線段AC的垂直平分線l,交AC于點O;
②連接BO并延長,在BO的延長線上截取OD,使得OD=OB;
③連接DA、DC
(2)判斷四邊形ABCD的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2﹣2ax+c(a>0)的圖象與x軸的負半軸和正半軸分別交于A、B兩點,與y軸交于點C,它的頂點為P,直線CP與過點B且垂直于x軸的直線交于點D,且CP:PD=2:3
(1)求A、B兩點的坐標;
(2)若tan∠PDB= ,求這個二次函數(shù)的關(guān)系式.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com