【題目】如圖,一艘巡邏艇航行至海面B處時,得知正北方向上距B處20海里的C處有一漁船發(fā)生故障,就立即指揮港口A處的救援艇前往C處營救.已知C處位于A處的北偏東45°的方向上,港口A位于B的北偏西30°的方向上.求A、C之間的距離.(結(jié)果精確到0.1海里,參考數(shù)據(jù) ≈1.41, ≈1.73)

【答案】解:作AD⊥BC,垂足為D,

由題意得,∠ACD=45°,∠ABD=30°,
設(shè)CD=x,在Rt△ACD中,可得AD=x,
在Rt△ABD中,可得BD= x,
又∵BC=20,即x x=20,
解得:
∴AC= x≈10.3(海里).
答:A、C之間的距離為10.3海里
【解析】作AD⊥BC,垂足為D,設(shè)CD=x,利用解直角三角形的知識,可得出AD,繼而可得出BD,結(jié)合題意BC=CD+BD=20海里可得出方程,解出x的值后即可得出答案.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩人都握有分別標(biāo)記為A、B、C的三張牌,兩人做游戲,游戲規(guī)則是:若兩人出的牌不同,則A勝B,B勝C,C勝A;若兩人出的牌相同,則為平局.
(1)用樹狀圖或列表等方法,列出甲、乙兩人一次游戲的所有可能的結(jié)果;
(2)求出現(xiàn)平局的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為保證中小學(xué)生每天鍛煉一小時,某校開展了形式多樣的體育活動項目,小明對某班同學(xué)參加鍛煉的情況進(jìn)行了統(tǒng)計,并繪制了下面的統(tǒng)計 圖(1)和圖(2).

(1)請根據(jù)所給信息在圖(1)中將表示“乒乓球”項目的圖形補充完整;
(2)扇形統(tǒng)計圖(2)中表示”足球”項目扇形的圓心角度數(shù)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,直線y=2x+n與x軸、y軸分別交于點A、B,與雙曲線y= 在第一象限內(nèi)交于點C(1,m).
(1)求m和n的值;
(2)過x軸上的點D(3,0)作平行于y軸的直線l,分別與直線AB和雙曲線y= 交于點P、Q,求△APQ的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,線段AB的長為2,C為AB上一個動點,分別以AC、BC為斜邊在AB的同側(cè)作兩個等腰直角三角形△ACD和△BCE,那么DE長的最小值是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,已知AB∥DC,AB=DC.在不添加任何輔助線的前提下,要想該四邊形成為矩形,只需再加上的一個條件是 . (填上你認(rèn)為正確的一個答案即可)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,AC⊥AB,AB=2 ,AC=2,點D是以AB為直徑的半圓O上一動點,DE⊥CD交直線AB于點E,設(shè)∠DAB=α(0°<α<90°).
(1)當(dāng)α=18°時,求 的長;
(2)當(dāng)α=30°時,求線段BE的長;
(3)若要使點E在線段BA的延長線上,則α的取值范圍是(直接寫出答案)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某校數(shù)學(xué)興趣小組為測得校園里旗桿AB的高度,在操場的平地上選擇一點C,測得旗桿頂端A的仰角為30°,再向旗桿的方向前進(jìn)16米,到達(dá)點D處(C、D、B三點在同一直線上),又測得旗桿頂端A的仰角為45°,請計算旗桿AB的高度(結(jié)果保留根號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】Pn表示n邊形的對角線的交點個數(shù)(指落在其內(nèi)部的交點),如果這些交點都不重合,那么Pn與n的關(guān)系式是:Pn= (n2﹣an+b)(其中a,b是常數(shù),n≥4)
(1)通過畫圖,可得:四邊形時,P4= ;五邊形時,P5=
(2)請根據(jù)四邊形和五邊形對角線交點的個數(shù),結(jié)合關(guān)系式,求a,b的值.

查看答案和解析>>

同步練習(xí)冊答案