如圖,點E在正方形ABCD內(nèi),滿足∠AEB=90°,AE=3,BE=4,則陰影部分的面積是
19
19
分析:根據(jù)勾股定理求出AB,分別求出△AEB和正方形ABCD的面積,即可求出答案.
解答:解:∵在Rt△AEB中,∠AEB=90°,AE=3,BE=4,由勾股定理得:AB=5,
∴正方形的面積是5×5=25,
∵△AEB的面積是
1
2
AE×BE=
1
2
×3×4=6,
∴陰影部分的面積是25-6=19,
故答案為:19.
點評:本題考查了正方形的性質(zhì),三角形的面積,勾股定理的應用,主要考查學生的計算能力和推理能力.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,點E在正方形ABCD的邊BC的延長線上,如果BE=BD,那么∠E=
 
°.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,點E在正方形ABCD的邊AB上,AE=1,BE=2.點F在邊BC的延長線上,且CF=BC;P是邊BC上的動點(與點B不重合),PQ⊥EF,垂足為O,并交邊AD于點Q;QH⊥BC,垂足為H.
(1)求證:△QPH∽△FEB;
(2)設BP=x,EQ=y,求y關于x的函數(shù)解析式,并寫出它的定義域;
(3)試探索△PEQ是否可能成為等腰三角形?如果可能,請求出x的值;如果不可能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,點E在正方形ABCD的邊AB上,若EB的長為1,EC的長為2,那么正方形ABCD的面積是( 。
A、
3
B、
5
C、3
D、5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•資陽)如圖,點E在正方形ABCD內(nèi),滿足∠AEB=90°,AE=6,BE=8,則陰影部分的面積是(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•曲靖)如圖,點E在正方形ABCD的邊AB上,連接DE,過點C作CF⊥DE于F,過點A作AG∥CF交DE于點G.
(1)求證:△DCF≌△ADG.
(2)若點E是AB的中點,設∠DCF=α,求sinα的值.

查看答案和解析>>

同步練習冊答案