【題目】對于⊙P及一個矩形給出如下定義:如果⊙P上存在到此矩形四個頂點(diǎn)距離都相等的點(diǎn),那么稱⊙P是該矩形的“等距圓”.如圖,在平面直角坐標(biāo)系xOy中,矩形ABCD的頂點(diǎn)A的坐標(biāo)為(),頂點(diǎn)C、Dx軸上,且OC=OD.

(1)當(dāng)⊙P的半徑為4時,

①在P1,),P2,),P3)中可以成為矩形ABCD的“等距圓”的圓心的是 ;

②如果點(diǎn)P在直線上,且⊙P是矩形ABCD的“等距圓”,求點(diǎn)P的坐標(biāo);

(2)已知點(diǎn)P軸上,且⊙P是矩形ABCD的“等距圓”,如果⊙P與直線AD沒有公共點(diǎn),直接寫出點(diǎn)P的縱坐標(biāo)m的取值范圍.

【答案】(1) ;

(2)

【解析】分析:(1)①由點(diǎn)A的坐標(biāo)為(,2),頂點(diǎn)C、Dx軸上,且OC=OD,可求得點(diǎn)B,C,D的坐標(biāo),繼而可求得到此矩形四個頂點(diǎn)距離都相等的點(diǎn)E的坐標(biāo),然后由⊙P的半徑為4,即可求得答案;

②首先設(shè)P的坐標(biāo)為(x,-x+1),易得x2+(-x+1-1)2=42,繼而求得答案;

(2)由題意可得|m-1|<,且|m-1|≠0,繼而求得答案.

詳解:(1)∵點(diǎn)A的坐標(biāo)為(,2),頂點(diǎn)C、Dx軸上,且OC=OD,

∴點(diǎn)B的坐標(biāo)為(-,2),點(diǎn)C的坐標(biāo)為(-,0),點(diǎn)D的坐標(biāo)為(,0),

∴矩形ABCD的中心E的坐標(biāo)為(0,1),

當(dāng)⊙P的半徑為4時,

①若P1(0,-3),則PE=1+3=4,

P2(2,3),則PE==4,

P3(-2,1)則PE=,

∴可以成為矩形ABCD等距圓的圓心的是:P1(0,-3),P2(2,3);

故答案為:P1(0,-3),P2(2,3).

②∵設(shè)P的坐標(biāo)為(x,-x+1),

E為(0,1),

x2+(-x+1-1)2=42,

解得:x=±2,

當(dāng)x=2時,y=-×2+1=-1;

當(dāng)x=-2時,y=-×(-2)+1=3;

∴點(diǎn)P的坐標(biāo)為(2,-1)或(-2,3);

(2)∵點(diǎn)Py上,且⊙P是矩形ABCD等距圓,且⊙P與直線AD沒有公共點(diǎn),

|m-1|<,且|m-1|≠0,

解得:1-<m<1+m≠1.

∴點(diǎn)P的縱坐標(biāo)m的取值范圍為:1-<m<1+m≠1.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】年全國信息學(xué)奧利匹克聯(lián)賽中,重慶八中學(xué)子再創(chuàng)輝煌,競賽成績?nèi)蓄I(lǐng)先,共人獲得全國一等獎,同時摘下高一年級組冠軍,高二年級組第二名,包攬初二年級組冠、亞、季軍.在校內(nèi)選拔賽時,某位同學(xué)連續(xù)答題道,答對一題得分,答錯一題扣分,最終該同學(xué)獲得分。請問這位同學(xué)答對多少道題?下面共列出個方程,其中錯誤的是(

A.設(shè)答對了道題,則可列方程:

B.設(shè)答錯了道題,則可列方程:

C.設(shè)答對題目得分,則可列方程:

D.設(shè)答錯題目扣分,則可列方程

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有一只拉桿式旅行箱(圖1),其側(cè)面示意圖如圖2所示.已知箱體長AB=50cm,拉桿的伸長距離最大時可達(dá)35cm,點(diǎn)A,B,C在同一條直線上.在箱體底端裝有圓形的滾輪⊙A,⊙A與水平地面MN相切于點(diǎn)D.在拉桿伸長至最大的情況下,當(dāng)點(diǎn)B距離水平地面38cm時,點(diǎn)C到水平地面的距離CE為59cm.

設(shè)AFMN

(1)求⊙A的半徑長;

(2)當(dāng)人的手自然下垂拉旅行箱時,人感到較為舒服.某人將手自然下垂在C端拉旅行箱時,CE為80cm,=64°.求此時拉桿BC的伸長距離.(精確到1cm,參考數(shù)據(jù):,

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有個填寫運(yùn)算符號的游戲:在“”中的每個□內(nèi),填入中的某一個(可重復(fù)使用),然后計算結(jié)果.

1)計算:;

2)若請推算□內(nèi)的符號;

3)在“”的□內(nèi)填入符號后,使計算所得數(shù)最小,直接寫出這個最小數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知如圖1,拋物線y=x2x+3x軸交于AB兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸相交于點(diǎn)C,點(diǎn)D的坐標(biāo)是(0,1),連接BC、AC

1)求出直線AD的解析式;

2)如圖2,若在直線AC上方的拋物線上有一點(diǎn)F,當(dāng)ADF的面積最大時,有一線段MN=(點(diǎn)M在點(diǎn)N的左側(cè))在直線BD上移動,首尾順次連接點(diǎn)A、M、NF構(gòu)成四邊形AMNF,請求出四邊形AMNF的周長最小時點(diǎn)N的橫坐標(biāo);

3)如圖3,將DBC繞點(diǎn)D逆時針旋轉(zhuǎn)α°0α°180°),記旋轉(zhuǎn)中的DBCDB′C′,若直線B′C′與直線AC交于點(diǎn)P,直線B′C′與直線DC交于點(diǎn)Q,當(dāng)CPQ是等腰三角形時,求CP的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下表是一個水文站在雨季對某條河一周內(nèi)水位變化情況的記錄.其中,水位上升用正數(shù)表示,水位下降用負(fù)數(shù)表示(水位變化的單位:m.

星期

變化

+0.4

-0.3

-0.4

-0.3

+0.2

+0.2

+0.1

注:①表中記錄的數(shù)據(jù)為每天12時的水位與前一天12時的水位的變化量.

②上周日12時的水位高度為2m.

1)請你通過計算說明本周末水位是上升了還是下降了;

2)用折線圖表示本周每天的水位,并根據(jù)折線圖說明水位在本周內(nèi)的升降趨勢.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在直角坐標(biāo)系中放入一個邊長AB長為3,BC長為5的矩形紙片ABCD,使得BC、AB所在直線分別與x、y軸重合.將紙片沿著折痕AE翻折后,點(diǎn)D恰好落在x軸上,記為F

1)求折痕AE所在直線與x軸交點(diǎn)的坐標(biāo);

2)如圖2,過DDGAF,求DG的長度;

3)將矩形ABCD水平向右移動n個單位,則點(diǎn)B坐標(biāo)為(n,0),其中n0.如圖3所示,連接OA,若△OAF是等腰三角形,試求點(diǎn)B的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】以正方形ABCD的邊AD作等邊ADE,則∠BEC的度數(shù)是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】按下列要求畫圖(不寫畫法,保留作圖痕跡)

(1)畫∠AOB=90°;

(2)在∠AOB外畫∠BOC=60°;

(3)分別畫∠AOB,AOC的角平分線OD,OE

查看答案和解析>>

同步練習(xí)冊答案