如圖,已知在⊙O中,AB= 4,AC是⊙O的直徑,AC⊥BD于F,∠A=30°.

⑴求圖中陰影部分的面積;

⑵若用陰影扇形OBD圍成一個(gè)圓錐側(cè)面,請(qǐng)求出這個(gè)圓錐底面圓的半徑.

 

【答案】

(1)陰影部分的面積為;(2)這個(gè)圓錐底面圓的半徑為

【解析】

試題分析:(1)由∠A=30°,可求得∠BOC=60°,再根據(jù)垂徑定理得∠BOD=120°,由勾股定理得出BF以及OB的長(zhǎng),從而計(jì)算出陰影部分的面積即扇形的面積.

(2)直接根據(jù)圓錐的側(cè)面展開圖扇形的弧長(zhǎng)等于圓錐底面周長(zhǎng)可得圓錐的底面圓的半徑.

試題解析:(1)∵AC⊥BD于F,∠A=30°,

∴∠BOC=60°,∠OBF=30°,

∵AB=,

∴BF=

∴OB=,

(2)設(shè)圓錐的底面圓的半徑為r,則周長(zhǎng)為2πr,

∴這個(gè)圓錐底面圓的半徑為

考點(diǎn):1.圓錐的計(jì)算,2.扇形面積的計(jì)算.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

20、如圖:已知在△ABC中,AB=AC,D為BC邊的中點(diǎn),過點(diǎn)D作DE⊥AB,DF⊥AC,垂足分別為E,F(xiàn).
(1)求證:△BED≌△CFD;
(2)若∠A=90°,求證:四邊形DFAE是正方形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知在⊙O中,CD是直徑,弦AB⊥CD,M是垂足,E為MA上的一點(diǎn),連接C、E兩點(diǎn)并延長(zhǎng)交⊙O于F,過F精英家教網(wǎng)作⊙O的切線交BA的延長(zhǎng)線于點(diǎn)P.
求證:CE•EF=2PE•EM.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2011•普寧市一模)如圖,已知在?ABCD中,E、F是對(duì)角線BD延長(zhǎng)線上的兩點(diǎn),且∠BCE=∠DAF,求證:△ECD≌△FAB.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知在△ABC中,AB=AC,AB的垂直平分線DE交AC于點(diǎn)E,CE的垂直平分線正好經(jīng)過點(diǎn)B,與AC相交于點(diǎn)F,求∠A的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知在△ABC中,AD、AE分別是BC邊上的高和中線,AB=9cm,AC=7cm,BC=8m,則DE=
2
2
cm.

查看答案和解析>>

同步練習(xí)冊(cè)答案