【題目】如圖,四邊形ABCD與四邊形AECF都是菱形,點(diǎn)E、F在BD上.已知∠BAD=120°,∠EAF=30°,則 =

【答案】
【解析】解:連接AC,過(guò)點(diǎn)E作EN⊥AB于點(diǎn)N,
∵四邊形ABCD與四邊形AECF都是菱形,點(diǎn)E、F在BD上,∠BAD=120°,∠EAF=30°,
∴∠ABD=30°,∠EAC=15°,則∠BAE=45°,
∴設(shè)AN=x,則NE=x,AE= x,BN= = x,
= =
所以答案是:
【考點(diǎn)精析】通過(guò)靈活運(yùn)用菱形的性質(zhì),掌握菱形的四條邊都相等;菱形的對(duì)角線(xiàn)互相垂直,并且每一條對(duì)角線(xiàn)平分一組對(duì)角;菱形被兩條對(duì)角線(xiàn)分成四個(gè)全等的直角三角形;菱形的面積等于兩條對(duì)角線(xiàn)長(zhǎng)的積的一半即可以解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若關(guān)于x的分式方程 無(wú)解,則m的值為( )
A.-1.5
B.1
C.-1.5或2
D.-0.5或-1.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】解不等式組 請(qǐng)結(jié)合題意,完成本題的解答.
(1)解不等式①,得 , 依據(jù)是:
(2)解不等式③,得
(3)把不等式①,②和③的解集在數(shù)軸上表示出來(lái).
(4)從圖中可以找出三個(gè)不等式解集的公共部分,得不等式組的解集

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABCD中,E,F(xiàn)是對(duì)角線(xiàn)BD上的兩點(diǎn),如果添加一個(gè)條件,使△ABE≌△CDF,則添加的條件不能為(
A.BE=DF
B.BF=DE
C.AE=CF
D.∠1=∠2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在邊長(zhǎng)為1的小正方形組成的方格紙中,若多邊形的各頂點(diǎn)都在方格紙的格點(diǎn)(橫豎格子線(xiàn)的交錯(cuò)點(diǎn))上,這樣的多邊形稱(chēng)為格點(diǎn)多邊形.記格點(diǎn)多邊形內(nèi)的格點(diǎn)數(shù)為a,邊界上的格點(diǎn)數(shù)為b,則格點(diǎn)多邊形的面積可表示為S=ma+nb﹣1,其中m,n為常數(shù).

(1)在下面的方格中各畫(huà)出一個(gè)面積為6的格點(diǎn)多邊形,依次為三角形、平行四邊形(非菱形)、菱形;
(2)利用(1)中的格點(diǎn)多邊形確定m,n的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中,E為CD的中點(diǎn),F(xiàn)為BE上的一點(diǎn),連結(jié)CF并延長(zhǎng)交AB于點(diǎn)M,MN⊥CM交射線(xiàn)AD于點(diǎn)N.
(1)當(dāng)F為BE中點(diǎn)時(shí),求證:AM=CE;
(2)若 =2,求 的值;
(3)若 =n,當(dāng)n為何值時(shí),MN∥BE?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)是(0,3),點(diǎn)B在x軸上,將△AOB繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°得到△AEF,點(diǎn)O、B的對(duì)應(yīng)點(diǎn)分別是點(diǎn)E、F.

(1)若點(diǎn)B的坐標(biāo)是(﹣4,0),請(qǐng)?jiān)趫D中畫(huà)出△AEF,并寫(xiě)出點(diǎn)E、F的坐標(biāo).
(2)當(dāng)點(diǎn)F落在x軸的上方時(shí),試寫(xiě)出一個(gè)符合條件的點(diǎn)B的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)二次函數(shù)y1=a(x﹣x1)(x﹣x2)(a≠0,x1≠x2)的圖象與一次函數(shù)y2=dx+e(d≠0)的圖象交于點(diǎn)(x1 , 0),若函數(shù)y=y1+y2的圖象與x軸僅有一個(gè)交點(diǎn),則(
A.a(x1﹣x2)=d
B.a(x2﹣x1)=d
C.a(x1﹣x22=d
D.a(x1+x22=d

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算:(﹣ 2+|﹣4|×21﹣( ﹣1)0

查看答案和解析>>

同步練習(xí)冊(cè)答案