【題目】如圖,矩形ABCD的對角線AC、BD交于點(diǎn)O,且DE∥AC,CE∥BD.
(1)求證:四邊形OCED是菱形;
(2)若∠BAC=30°,AC=4,求菱形OCED的面積.
【答案】
(1)證明:∵CE∥OD,DE∥OC,
∴四邊形OCED是平行四邊形,
∵矩形ABCD,∴AC=BD,OC= AC,OD= BD,
∴OC=OD,
∴四邊形OCED是菱形;
(2)解:在矩形ABCD中,∠ABC=90°,∠BAC=30°,AC=4,
∴BC=2,
∴AB=DC=2 ,
連接OE,交CD于點(diǎn)F,
∵四邊形ABCD為菱形,
∴F為CD中點(diǎn),
∵O為BD中點(diǎn),
∴OF= BC=1,
∴OE=2OF=2,
∴S菱形OCED= ×OE×CD= ×2×2 =2 .
【解析】(1)根據(jù)平行四邊形的定義可得出四邊形OCED是平行四邊形,然后根據(jù)矩形的性質(zhì)求出OC=OD,然后依據(jù)菱形的定義進(jìn)行判斷即可.
(2)首先連接OE,交CD于點(diǎn)F,然后,解直角三角形求出BC=2.AB=DC=2,接下來,根據(jù)菱形的性質(zhì)得出F為CD中點(diǎn),求出OF=BC=1,求出OE=2OF=2,最后,依據(jù)菱形的面積等于兩對角線乘積的一半求解即可.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線l1:y=2x+1與直線l2:y=mx+4相交于點(diǎn)P(1,b).
(1)求b,m的值;
(2)垂直于x軸的直線x=a與直線l1,l2分別交于點(diǎn)C,D,若線段CD長為2,求a的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是小強(qiáng)洗漱時的側(cè)面示意圖,洗漱臺(矩形)靠墻擺放,高,寬.小強(qiáng)身高,下半身,洗漱時下半身與地面成(),身體前傾成(),腳與洗漱臺距離(點(diǎn)在同一直線上).
(1)此時小強(qiáng)頭部點(diǎn)與地面相距多少?
(2)小強(qiáng)希望他的頭部恰好在洗漱盆中點(diǎn)的正上方,他應(yīng)向前或后退多少?
(,結(jié)果精確到)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】重慶某中學(xué)組織七、八、九年級學(xué)生參加“直轄20年,點(diǎn)贊新重慶”作文比賽,該校將收到的參賽作文進(jìn)行分年級統(tǒng)計(jì),繪制了如圖1和如圖2兩幅不完整的統(tǒng)計(jì)圖,根據(jù)圖中提供的信息完成以下問題.
(1)扇形統(tǒng)計(jì)圖中九年級參賽作文篇數(shù)對應(yīng)的圓心角是 度,并補(bǔ)全條形統(tǒng)計(jì)圖;
(2)經(jīng)過評審,全校有4篇作文榮獲特等獎,其中有一篇來自七年級,學(xué)校準(zhǔn)備從特等獎作文中任選兩篇刊登在?,請利用畫樹狀圖或列表的方法求出七年級特等獎作文被選登在?系母怕剩
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某工廠今年元月份的產(chǎn)量是50萬元,3月份的產(chǎn)值達(dá)到了72萬元.若求2、3月份的產(chǎn)值平均增長率,設(shè)這兩個月的產(chǎn)值平均月增長率為x,依題意可列方程( )
A.72(x+1)2=50
B.50(x+1)2=72
C.50(x﹣1)2=72
D.72(x﹣1)2=50
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com