如圖甲,把正方形ACFG和Rt△ACB按如圖甲所示重疊在一起,其中AC=2,∠BAC=60°,若把Rt△ACB繞直角頂點C按順時針方向旋轉(zhuǎn),使斜邊AB恰好經(jīng)過正方形的頂點F,得△A′B′C,AB分別與A′C,A′B′相交于D,E,如圖乙所示,那么△ACB與△A′B′C的重疊部分(即陰影部分)的面積為   
【答案】分析:根據(jù)題意,建立坐標系,易得A′C′、AB、A′B′的直線方程,進而可得E、H的坐標,計算可得S△A′DE,由圖形間的關(guān)系,計算可得答案.
解答:解:如圖取坐標系,易知,△A′CF為正三角形,A′C方程:y=x①
AB方程:+=1②,A′B′方程:y=-(x-2)③.
①②得D(,).  ②③得E(3-,3-).
又A′(1,
y=3-,與①聯(lián)立得H(2-,3-),
高=2-3,底=2-
S△A′DE=[(2-3)(2-)]÷2=-6,
SAFED=S△A′CF-S△A′DE=6-
點評:本題考查面積的計算,涉及旋轉(zhuǎn)的性質(zhì)與運用,注意結(jié)合函數(shù)的基本性質(zhì)解題.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

如圖甲,把正方形ACFG和Rt△ACB按如圖甲所示重疊在一起,其中AC=2,∠BAC=60°,若把Rt△ACB繞直角頂點C按順時針方向旋轉(zhuǎn),使斜邊AB恰好經(jīng)過正方形的頂點F,得△A′B′C,AB分別與A′C,A′B′相交于D,E,如圖乙所示,那么△ACB與△A′B′C的重疊部分(即陰影部分)的面積為
 

精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:填空題

如圖甲,把正方形ACFG和Rt△ACB按如圖甲所示重疊在一起,其中AC=2,∠BAC=60°,若把Rt△ACB繞直角頂點C按順時針方向旋轉(zhuǎn),使斜邊AB恰好經(jīng)過正方形的頂點F,得△A′B′C,AB分別與A′C,A′B′相交于D,E,如圖乙所示,那么△ACB與△A′B′C的重疊部分(即陰影部分)的面積為________.

查看答案和解析>>

科目:初中數(shù)學 來源:江蘇月考題 題型:解答題

如圖,把正方形ACFG與Rt△ACB按如圖(甲)所示重疊在一起,其中AC=2, ∠BAC=60。,若把Rt△ACB繞直角頂點C按順時針方向旋轉(zhuǎn),旋轉(zhuǎn)角α,且0°≤α≤90°,旋轉(zhuǎn)后的三角形為△A′B′C,A B分別與A′C、A′B′相交于D、E, A′B′與正方形的邊的交點為P.
(1)若斜邊AB恰好經(jīng)過正方形ACFG的頂點F,如圖(乙)所示.
①. △ACB旋轉(zhuǎn)多少度才能得到△A′B′C?說明理由.
②.求△ACB與△A′B′C的重疊部分(即四邊形CDEF)的面積.
(2)當α為多少度時?△AD A′為等腰三角形.
(3)α從0°至90°,在整個旋轉(zhuǎn)過程中,求點P移動的距離.

查看答案和解析>>

科目:初中數(shù)學 來源:模擬題 題型:填空題

如圖甲,把正方形ACFG和Rt△ACB按如圖甲所示重疊在一起,其中AC=2,∠BAC=60°,若把Rt△ACB繞直角頂點C按順時針方向旋轉(zhuǎn),使斜邊AB恰好經(jīng)過正方形的頂點F,得△A′B′C,AB分別與A′C, A′B′相交于D,E,如圖乙所示,那么△ACB與△A′B′C的 重疊部分(即陰影部分)的面積為(     )

查看答案和解析>>

同步練習冊答案