如圖,在Rt△ABC中,∠C為直角,以AB上一點O為圓心,OA長為半徑的圓與BC相切于點D,分別交AC、AB于點E、F.

【小題1】若AC=8,AB=12,求⊙O的半徑;
【小題2】連接OE、ED、DF、EF.若四邊形BDEF是平行四邊形,試判斷四邊形OFDE的形狀,并說明理由

【小題1】設⊙O的半徑為r.
∵BC切⊙O于點D ∴OD⊥BC
∵∠C=90° ∴OD∥AC ∴△OBD∽△ABC.   …………………………2分
 = ,即  解得: 

∴⊙O的半徑為………………………4分
【小題2】四邊形OFDE是菱形      ………………5分
∵四邊形BDEF是平行四邊形 ∴∠DEF=∠B.
∵∠DEF=∠DOB∴∠B=∠DOB.
∵∠ODB=90° ∴∠DOB+∠B=90° ∴∠DOB=60°
∵DE∥AB,∴∠ODE=60°.∵OD=OE,∴△ODE是等邊三角形
∴OD=DE∵OD=OF∴DE=OF∴四邊形OFDE是平行四邊形  ………7分
∵OE=OF∴平行四邊形OFDE是菱形.  …………………………………8分解析:
(1)連接OD,設⊙O的半徑為r,可證出△BOD∽△BAC,則,從而求得r;(2)由四邊形BDEF是平行四邊形,得∠DEF=∠B,再由圓周角定理可得,∠B= ∠DOB,則△ODE是等邊三角形,先得出四邊形OFDE是平行四邊形.再根據(jù)OE=OF,則平行四邊形OFDE是菱形.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(2013•莆田質檢)如圖,在Rt△ABC中,∠C=90°,∠BAC的平分線AD交BC于點D,點E是AB上一點,以AE為直徑的⊙O過點D,且交AC于點F.
(1)求證:BC是⊙O的切線;
(2)若CD=6,AC=8,求AE.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在Rt△ABC中,∠C=90°,AC=6cm,BC=8cm,AD和BD分別是∠BAC和∠ABC的平分線,它們相交于點D,求點D到BC的距離.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在Rt△ABC中,∠C=90°,∠A=30°,BC=1,將三角板中一個30°角的頂點D放在AB邊上移動,使這個30°角的兩邊分別與△ABC的邊AC、BC相交于點E、F,且使DE始終與AB垂直.
(1)畫出符合條件的圖形.連接EF后,寫出與△ABC一定相似的三角形;
(2)設AD=x,CF=y.求y與x之間函數(shù)解析式,并寫出函數(shù)的定義域;
(3)如果△CEF與△DEF相似,求AD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在Rt△ABC中,BD⊥AC,sinA=
3
5
,則cos∠CBD的值是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在Rt△ABC中,∠ACB=90°,AC=8cm,BC=4cm,D、E分別為邊AB、BC的中點,連接DE,點P從點A出發(fā),沿折線AD-DE-EB運動,到點B停止.點P在AD上以
5
cm/s的速度運動,在折線DE-EB上以1cm/s的速度運動.當點P與點A不重合時,過點P作PQ⊥AC于點Q,以PQ為邊作正方形PQMN,使點M落在線段AC上.設點P的運動時間為t(s).
(1)當點P在線段DE上運動時,線段DP的長為
(t-2)
(t-2)
cm,(用含t的代數(shù)式表示).
(2)當點N落在AB邊上時,求t的值.
(3)當正方形PQMN與△ABC重疊部分圖形為五邊形時,設五邊形的面積為S(cm2),求S與t的函數(shù)關系式.

查看答案和解析>>

同步練習冊答案