若(x2+y2+2)(x2+y2-3)=6,求x2+y2 ( 。
A.3B.4或-3C.6或-3D.4
∵(x2+y2+2)(x2+y2-3)=6
∴(x2+y22-3(x2+y2)+2(x2+y2)-6-6=0,
∴(x2+y22-(x2+y2)-12=0,
∴(x2+y2-4)(x2+y2+3)=0,
∴x2+y2-4=0,x2+y2+3=0,
∴x2+y2=4或x2+y2=-3,
∵不論x y為何值,x2+y2的結(jié)果不能為-3,
∴x2+y2=-3舍去,
故選D.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

13、若(x2+y22-4(x2+y2)-5=0,則x2+y2=
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

材料一:在平面直角坐標(biāo)系中,如果已知A,B兩點的坐標(biāo)為(x1,y1)和(x2,y2),設(shè)AB=t,那么我們可以通過構(gòu)造直角三角形用勾股定理得出結(jié)論:(x1-x22+(y1-y22=t2
材料二:根據(jù)圓的定義,圓是到定點的距離等于定長的所有點的集合(其中定點為圓心,定長為半徑).如果把圓放在平面直角坐標(biāo)系中,我們設(shè)圓心坐標(biāo)為(a,b),半徑為r,圓上任意一點的坐標(biāo)為(x,y),那么我們可以根據(jù)材料一的結(jié)論得出:(x-a)2+(y-b)2=r2,這個二元二次方程我們把它定義為圓的方程.比如:以點(3,4)為圓心,4為半徑的圓,我們可以用方程(x-3)2+(y-4)2=42來表示.事實上,滿足這個方程的任意一個坐標(biāo)(x,y),都在已知圓上.
認(rèn)真閱讀以上兩則材料,回答下列問題:
(1)方程(x-7)2+(y-8)2=81表示的是以
(7,8)
(7,8)
為圓心,
9
9
為半徑的圓的方程.
(2)方程x2+y2-2x+2y+1=0表示的是以
(1,-1)
(1,-1)
為圓心,
1
1
為半徑的圓的方程; 猜想:若方程x2+y2+Dx+Ey+F=0(其中D,E,F(xiàn)為常數(shù))表示的是一個圓的方程,則D,E,F(xiàn)要滿足的條件是
D2+E2-4F>0
D2+E2-4F>0

(3)方程x2+y2=4所表示的圓上的所有點到點(3,4)的最小距離是
3
3
(直接寫出結(jié)果).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

若(x2+y2-1)2=4,則x2+y2=
3
3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

若(x2+y2-2012)(x2+y2+2013)=0,則x2+y2=( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

基本事實:“若ab=0,則a=0或b=0”.一元二次方程x2-x-2=0可通過因式分解化為(x-2)(x+1)=0,由基本事實得x-2=0或x+1=0,即方程的解為x=2和x=-1.
(1)試?yán)蒙鲜龌臼聦,解方程?x2-x=0;
(2)若(x2+y2)(x2+y2-1)-2=0,求x2+y2的值.

查看答案和解析>>

同步練習(xí)冊答案