(2005•天津)在四邊形ABCD中,O是對角線的交點,能判定這個四邊形是正方形的條件是( )
A.AC=BD,AB∥CD,AB=CD
B.AD∥BC,∠A=∠C
C.AO=BO=CO=DO,AC⊥BD
D.AO=CO,BO=DO,AB=BC
【答案】分析:根據(jù)正方形的判定:對角線互相垂直平分且相等的四邊形是正方形進行分析從而得到最后的答案.
解答:解:A,不能,只能判定為矩形;
B,不能,只能判定為平行四邊形;
C,能;
D,不能,只能判定為菱形.
故選C.
點評:本題是考查正方形的判別方法,判別一個四邊形為正方形主要根據(jù)正方形的概念,途經(jīng)有兩種:①先說明它是矩形,再說明有一組鄰邊相等;②先說明它是菱形,再說明它有一個角為直角.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2005年全國中考數(shù)學(xué)試題匯編《銳角三角函數(shù)》(04)(解析版) 題型:解答題

(2005•天津)在△ABC中,∠A、∠B、∠C所對的邊分別用a、b、c表示.
(1)如圖,在△ABC中,∠A=2∠B,且∠A=60度.求證:a2=b(b+c).

(2)如果一個三角形的一個內(nèi)角等于另一個內(nèi)角的2倍,我們稱這樣的三角形為“倍角三角形”.第一問中的三角形是一個特殊的倍角三角形,那么對于任意的倍角三角形ABC,其中∠A=2∠B,關(guān)系式a2=b(b+c)是否仍然成立?并證明你的結(jié)論.

(3)試求出一個倍角三角形的三條邊的長,使這三條邊長恰為三個連續(xù)的正整數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2005年全國中考數(shù)學(xué)試題匯編《四邊形》(03)(解析版) 題型:選擇題

(2005•天津)在四邊形ABCD中,O是對角線的交點,能判定這個四邊形是正方形的條件是( )
A.AC=BD,AB∥CD,AB=CD
B.AD∥BC,∠A=∠C
C.AO=BO=CO=DO,AC⊥BD
D.AO=CO,BO=DO,AB=BC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2005年全國中考數(shù)學(xué)試題匯編《三角形》(11)(解析版) 題型:解答題

(2005•天津)在△ABC中,∠A、∠B、∠C所對的邊分別用a、b、c表示.
(1)如圖,在△ABC中,∠A=2∠B,且∠A=60度.求證:a2=b(b+c).

(2)如果一個三角形的一個內(nèi)角等于另一個內(nèi)角的2倍,我們稱這樣的三角形為“倍角三角形”.第一問中的三角形是一個特殊的倍角三角形,那么對于任意的倍角三角形ABC,其中∠A=2∠B,關(guān)系式a2=b(b+c)是否仍然成立?并證明你的結(jié)論.

(3)試求出一個倍角三角形的三條邊的長,使這三條邊長恰為三個連續(xù)的正整數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2005年天津市中考數(shù)學(xué)試卷(大綱卷)(解析版) 題型:解答題

(2005•天津)在△ABC中,∠A、∠B、∠C所對的邊分別用a、b、c表示.
(1)如圖,在△ABC中,∠A=2∠B,且∠A=60度.求證:a2=b(b+c).

(2)如果一個三角形的一個內(nèi)角等于另一個內(nèi)角的2倍,我們稱這樣的三角形為“倍角三角形”.第一問中的三角形是一個特殊的倍角三角形,那么對于任意的倍角三角形ABC,其中∠A=2∠B,關(guān)系式a2=b(b+c)是否仍然成立?并證明你的結(jié)論.

(3)試求出一個倍角三角形的三條邊的長,使這三條邊長恰為三個連續(xù)的正整數(shù).

查看答案和解析>>

同步練習(xí)冊答案