已知:如圖,在△ABC中,∠CAB=120°,AB=4,AC=2,AD⊥BC,D是垂足.求AD的長(zhǎng).

【答案】分析:過(guò)點(diǎn)C作,AB邊上的高CE,在RT△CAE中,利用三角函數(shù)求得AE,CE的長(zhǎng),從而便得到了BE的長(zhǎng),再根據(jù)三角函數(shù)便可求得AD的長(zhǎng).
解答:解:如圖,過(guò)點(diǎn)C作AB邊上的高CE,
則∠CAE=180°-120°=60°,
在Rt△ACE中,∠CEA=90°,
∵sin∠CAE=,cos∠CAE=,
∴CE=AC•sin60°=2×=,
AE=AC•cos60°=2×=1
∴BE=AB+AE=5;
在Rt△CBE中,由勾股定理得,BC=2,
∵AD⊥BC,
∴sin∠B=
∴AD=
點(diǎn)評(píng):此題考查學(xué)生對(duì)輔助線的添加及解直角三角形的綜合運(yùn)用能力,還考查解直角三角形的定義,由直角三角形已知元素求未知元素的過(guò)程,只要理解直角三角形中邊角之間的關(guān)系即可求解.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

34、已知:如圖,在AB、AC上各取一點(diǎn),E、D,使AE=AD,連接BD,CE,BD與CE交于O,連接AO,∠1=∠2,
求證:∠B=∠C.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•啟東市一模)已知,如圖,在Rt△ABC中,∠C=90°,∠BAC的角平分線AD交BC邊于D.
(1)以AB邊上一點(diǎn)O為圓心,過(guò)A,D兩點(diǎn)作⊙O(不寫(xiě)作法,保留作圖痕跡),再判斷直線BC與⊙O的位置關(guān)系,并說(shuō)明理由;
(2)若(1)中的⊙O與AB邊的另一個(gè)交點(diǎn)為E,半徑為2,AB=6,求線段AD、AE與劣弧DE所圍成的圖形面積.(結(jié)果保留根號(hào)和π)《根據(jù)2011江蘇揚(yáng)州市中考試題改編》

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:如圖,在△ABC中,∠C=120°,邊AC的垂直平分線DE與AC、AB分別交于點(diǎn)D和點(diǎn)E.
(1)作出邊AC的垂直平分線DE;
(2)當(dāng)AE=BC時(shí),求∠A的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

已知:如圖,在AB、AC上各取一點(diǎn)E、D,使AE=AD,連接BD,CE,BD與CE交于O,連接AO,∠1=∠2,
求證:∠B=∠C.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:專(zhuān)項(xiàng)題 題型:證明題

已知:如圖,在AB、AC上各取一點(diǎn),E、D,使AE=AD,連結(jié)BD,CE,BD與CE交于O,連結(jié)AO,
           ∠1=∠2;
求證:∠B=∠C

查看答案和解析>>

同步練習(xí)冊(cè)答案