【題目】如圖,已知在梯形ABCD中,AB//CD,AB=12,CD=7,點(diǎn)E在邊AD上,,過點(diǎn)EEF//AB交邊BC于點(diǎn)F.

1)求線段EF的長(zhǎng);

2)設(shè),,聯(lián)結(jié)AF,請(qǐng)用向量表示向量.

【答案】19;(2

【解析】

(1)DBC的平行線分別交EFM,ABG,由DEAE=23,即可求得,然后在梯形ABCD中,ABCD,AB=12CD=7,根據(jù)平行線分線段成比例定理,即可求得EF的長(zhǎng).

(2)根據(jù)(1)中的比例關(guān)系寫出向量即可.

解:(1) DBC的平行線分別交EFMABG,
,.
又∵EFABABCD,AB=12,CD=7
CD=MF=GB=7,
AG=5.

EM=AG=2.
EF=EM+MF=9

(2)∵ ,,由(1)知,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在下列10×10的網(wǎng)格中,橫、縱坐標(biāo)均為整點(diǎn)的數(shù)叫做格點(diǎn),例如A2,1)、B5,4)、C1,8)都是格點(diǎn).

1)直接寫出ABC的面積;

2)將ABC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)90°得到A1BC1,在網(wǎng)格中畫出A1BC1;

3)在圖中畫出線段EF,使它同時(shí)滿足以下條件:①點(diǎn)EABC內(nèi);②點(diǎn)E,F都是格點(diǎn);③EF三等分BC;④EF.請(qǐng)寫出點(diǎn)E,F的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線與函數(shù)的圖象交于,兩點(diǎn),且點(diǎn)的坐標(biāo)為

1)求的值;

2)已知點(diǎn),過點(diǎn)作平行于軸的直線,交直線于點(diǎn),交函數(shù)的圖象于點(diǎn)

①當(dāng)時(shí),求線段的長(zhǎng);

②若,結(jié)合函數(shù)的圖象,直接寫出的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,以點(diǎn)為圓心畫圓,與軸交于;兩點(diǎn),與軸交于兩點(diǎn),當(dāng)時(shí),的取值范圍是____________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,是等邊三角形,APBP的延長(zhǎng)線分別交邊CD于點(diǎn)EF,聯(lián)結(jié)AC、CP、ACBF相交于點(diǎn)H,下列結(jié)論中錯(cuò)誤的是(

A.AE=2DEB.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知在菱形ABCD中,AB=4,∠BAD=120°,點(diǎn)P是直線AB上任意一點(diǎn),聯(lián)結(jié)PC,在∠PCD內(nèi)部作射線CQ與對(duì)角線BD交于點(diǎn)Q(與B、D不重合),且∠PCQ=30°.

1)如圖,當(dāng)點(diǎn)P在邊AB上時(shí),如果BP=3,求線段PC的長(zhǎng);

2)當(dāng)點(diǎn)P在射線BA上時(shí),設(shè),求y關(guān)于的函數(shù)解析式及定義域;

3)聯(lián)結(jié)PQ,直線PQ與直線BC交于點(diǎn)E,如果相似,求線段BP的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,以矩形ABCD的邊CD為直徑作⊙O,點(diǎn)EAB 的中點(diǎn),連接CE交⊙O于點(diǎn)F,連接AF并延長(zhǎng)交BC于點(diǎn)H

1)若連接AO,試判斷四邊形AECO的形狀,并說明理由;

2)求證:AH是⊙O的切線;

3AB6CH2,則AH的長(zhǎng)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場(chǎng)一種商品的進(jìn)價(jià)為每件元,售價(jià)為每件.每天可以銷售件,為盡快減少庫存,商場(chǎng)決定降價(jià)促銷.

(1)若該商品連續(xù)兩次下調(diào)相同的百分率后售價(jià)降至每件元,求兩次下降的百分率;

(2)經(jīng)調(diào)查,若該商品每降價(jià)元,每天可多銷售,那么每天要想獲得最大利潤(rùn),每件售價(jià)應(yīng)多少元?最大利潤(rùn)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)的圖像分別交x、y軸于點(diǎn)A、B,拋物線經(jīng)過點(diǎn)A、B,點(diǎn)P為第四象限內(nèi)拋物線上的一個(gè)動(dòng)點(diǎn).

1)求此拋物線對(duì)應(yīng)的函數(shù)表達(dá)式;

2)如圖1所示,過點(diǎn)PPM∥y軸,分別交直線ABx軸于點(diǎn)C、D,若以點(diǎn)P、BC為頂點(diǎn)的三角形與以點(diǎn)A、C、D為頂點(diǎn)的三角形相似,求點(diǎn)P的坐標(biāo);

3)如圖2所示,過點(diǎn)PPQ⊥AB于點(diǎn)Q,連接PB,當(dāng)△PBQ中有某個(gè)角的度數(shù)等于∠OAB度數(shù)的2倍時(shí),請(qǐng)直接寫出點(diǎn)P的橫坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案