(2004•金華)如圖有一個邊長為1.5cm的正六邊形,如果要剪一張圓形紙片完全蓋住這個圖形,那么這張圓形紙片的最小半徑為    cm.
【答案】分析:根據(jù)題意畫出圖形,求出此正六邊形外接圓的半徑即可.
解答:解:如圖所示,連接OA,OB,過O作OD⊥AB于D,
則OB=OA,AD=BD=AB=×1.5=0.75;
∵此六邊形是正六邊形,
∴∠AOB==60°,∠AOD=×∠AOB=×60°=30°,
∴OA=2AD=2×0.75=1.5cm.
點評:解正多邊形和圓的問題時,應連接圓心和正多邊形的頂點,作出邊心距,得到和中心角一半有關的直角三角形進行求解.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2004年全國中考數(shù)學試題匯編《二次函數(shù)》(05)(解析版) 題型:解答題

(2004•金華)如圖,已知拋物線經(jīng)過點A(-3,0),B(0,3),C(2,0)三點.
(1)求此拋物線的解析式;
(2)如果點D(1,m)在這條拋物線上,求m的值的點D關于這條拋物線對稱軸的對稱點E的坐標,并求出tan∠ADE的值.

查看答案和解析>>

科目:初中數(shù)學 來源:2004年全國中考數(shù)學試題匯編《一次函數(shù)》(04)(解析版) 題型:解答題

(2004•金華)如圖在平面直角坐標系內,點A與C的坐標分別為(4,8),(0,5),過點A作AB⊥x軸于點B,過OB上的動點D作直線y=kx+b平行于AC,與AB相交于點E,連接CD,過點E作直線EF∥CD,交AC于點F.
(1)求經(jīng)過點A,C兩點的直線解析式;
(2)當點D在OB上移動時,能否使四邊形CDEF成為矩形?若能,求出此時k、b的值;若不能,請說明理由;
(3)如果將直線AC作向下平移,交y軸于點C′,交AB于點A′,連接DC′,過點E作EF′∥DC′,交A′C′于點F′,那么能否使四邊形C′DEF′成為正方形?若能,請求出此時正方形的面積;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2004年浙江省金華市中考數(shù)學試卷(解析版) 題型:解答題

(2004•金華)如圖在平面直角坐標系內,點A與C的坐標分別為(4,8),(0,5),過點A作AB⊥x軸于點B,過OB上的動點D作直線y=kx+b平行于AC,與AB相交于點E,連接CD,過點E作直線EF∥CD,交AC于點F.
(1)求經(jīng)過點A,C兩點的直線解析式;
(2)當點D在OB上移動時,能否使四邊形CDEF成為矩形?若能,求出此時k、b的值;若不能,請說明理由;
(3)如果將直線AC作向下平移,交y軸于點C′,交AB于點A′,連接DC′,過點E作EF′∥DC′,交A′C′于點F′,那么能否使四邊形C′DEF′成為正方形?若能,請求出此時正方形的面積;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2004年浙江省金華市中考數(shù)學試卷(解析版) 題型:解答題

(2004•金華)如圖,已知拋物線經(jīng)過點A(-3,0),B(0,3),C(2,0)三點.
(1)求此拋物線的解析式;
(2)如果點D(1,m)在這條拋物線上,求m的值的點D關于這條拋物線對稱軸的對稱點E的坐標,并求出tan∠ADE的值.

查看答案和解析>>

科目:初中數(shù)學 來源:2004年浙江省金華市中考數(shù)學試卷(解析版) 題型:解答題

(2004•金華)如圖在四邊形ABCD中,DE∥BC,交AB于點E,點F在AB上,請你再添加一個條件(不再標注或使用其他字母),使△FCB∽△ADE,并給出證明.

查看答案和解析>>

同步練習冊答案