(1)1
2
3
+(-1
1
2
)+4
1
3
-4
1
2
       
(2)-14+(1-0.5)×
1
3
×|2-(-3)2|
(3)6a2+4ab-4(2a2+
1
2
ab)
(4)2(a2-2ab-b2)+(a2+3ab+3b2
(5)3x-(2x+7)=32                       
(6)
2x+1
3
=1-
x-1
5
考點:有理數(shù)的混合運(yùn)算,整式的加減,解一元一次方程
專題:計算題
分析:(1)原式結(jié)合后,相加即可得到結(jié)果;
(2)原式先計算乘方運(yùn)算,再計算乘法運(yùn)算,最后算加減運(yùn)算即可得到結(jié)果;
(3)原式去括號合并即可得到結(jié)果;
(4)原式去括號合并即可得到結(jié)果;
(5)方程去括號,移項合并,將x系數(shù)化為1,即可求出解;
(6)方程去分母,去括號,移項合并,將x系數(shù)化為1,即可求出解.
解答:解:(1)原式=6-6=0;
(2)原式=-1+
1
2
×
1
3
×7=-1+
7
6
=
1
6
;
(3)原式=6a2+4ab-8a2-2ab=-2a2+2ab;
(4)原式=2a2-4ab-2b2+a2+3ab+3b2=3a2-ab+b2;
(5)方程去括號得:3x-2x-7=32,
移項合并得:x=41;
(6)去分母得:10x+5=15-3x+3.
移項合并得:13x=13,
解得:x=1.
點評:此題考查了有理數(shù)的混合運(yùn)算,熟練掌握運(yùn)算法則是解本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知拋物線y1=ax2+bx+a(a>2)與直線y2=mx+1交于A(m,2)(m>0),B(p,q)兩個不同的點,且直線AB與y軸交于點C,求△OBC面積的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

解方程組
4y2
1+4y2
=y
4x2
1+4x2
=z
4z2
1+4z2
=x

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:線段AB=20cm.
(1)如圖1,點P沿線段AB自A點向B點以2厘米/秒運(yùn)動,點Q沿線段BA自B點向A點以3厘米/秒運(yùn)動,經(jīng)過
 
秒,點P、Q兩點能相遇.
(2)如圖1,點P沿線段AB自A點向B點以2厘米/秒運(yùn)動,點P出發(fā)2秒后,點Q沿線段BA自B點向A點以3厘米/秒運(yùn)動,問再經(jīng)過幾秒后P、Q相距5cm?
(3)如圖2:AO=4cm,PO=2cm,∠POB=60°,點P繞著點O以60度/秒的速度逆時針旋轉(zhuǎn)一周停止,同時點Q沿直線BA自B點向A點運(yùn)動,假若點P、Q兩點能相遇,求點Q運(yùn)動的速度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(1)計算:|2
2
-3|-(-
1
2
)-2+
18

(2)已知x=
3
+1,y=
3
-1,求代數(shù)式x2-y2的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,直線y=2x-4分別交x軸、y軸于B、A兩點,交雙曲線y=
k
x
(x>0)于點C,且S△AOC=8.M是射線BA上一點,將線段BM繞B點逆時針旋轉(zhuǎn)135°,M落在雙曲線上的點N處,求線段BM的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在曠野上,一個人騎著馬從A到B,半路上他必須先到河岸l的P點去讓馬飲水,然后再讓馬到河岸m的Q點再次飲水,最后到達(dá)B點,他應(yīng)該如何選擇飲馬地點P、Q,才能使所走路程AP+PQ+QB為最短(假設(shè)河岸l、m為直線).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

某樹種的高度與樹生長的年數(shù)有關(guān),測得這種樹木某棵樹的有關(guān)數(shù)據(jù)如下表:(樹苗原高200厘米)
年數(shù)(n)高度an(單位:厘米)
1220
2240
3260
4280
(1)生長了11年的這棵樹的高度是多少?
(2)用含有字母n的代數(shù)式表示生長了n年的這棵樹的高度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

用一長為22米的籬笆能圍成面積為30平方米的矩形菜地嗎?如果能,矩形的兩邊應(yīng)各為多少米?

查看答案和解析>>

同步練習(xí)冊答案