如圖,圓心角都為90°的扇形OAB與扇形OCD疊放在一起,OA=1,OC=3,將扇形OAB繞O點旋轉一下得到右圖(0°<∠COA<90°),分別連接AC,BD,則下圖中陰影部分的面積為________.


分析:由旋轉的性質得∠1=∠2,又由圓心角都為90°的扇形OAB與扇形OCD得到,OA=OB,OC=OD,于是△OAC≌△OBD,S扇形OAE=S扇形OBF,得到S曲邊AEC=S曲邊DBF,則S陰影部分=S曲邊CEFD=S扇形OCD-S扇形OEF,然后根據(jù)扇形的面積公式進行計算即可.
解答:解:如圖,
根據(jù)題意,得∠1=∠2,
由圓心角都為90°的扇形OAB與扇形OCD得到,OA=OB,OC=OD,
∴△OAC≌△OBD,S扇形OAE=S扇形OBF,
∴S曲邊AEC=S曲邊DBF,
∴S陰影部分=S曲邊CEFD=S扇形OCD-S扇形OEF=-=2π.
故答案為:2π.
點評:本題考查了扇形的面積公式:S=,其中n為扇形的圓心角的度數(shù),R為圓的半徑),或S=lR,l為扇形的弧長,R為半徑.也考查了旋轉的性質和三角形全等的判定與性質.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

如圖,圓心角都為90°的扇形OAB與扇形OCD疊放在一起,OA=1,OC=3,將扇形OAB繞O點旋轉一下得到右圖(0°<∠COA<90°),分別連接AC,BD,則下圖中陰影部分的面積為
 

精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源:2008-2009學年河南省鄭州九中聯(lián)考九年級(上)期末數(shù)學試卷(解析版) 題型:填空題

如圖,圓心角都為90°的扇形OAB與扇形OCD疊放在一起,OA=1,OC=3,將扇形OAB繞O點旋轉一下得到右圖(0°<∠COA<90°),分別連接AC,BD,則下圖中陰影部分的面積為   

查看答案和解析>>

科目:初中數(shù)學 來源:2010-2011學年河北省秦皇島市海港區(qū)九年級(上)期末數(shù)學試卷(二)(解析版) 題型:填空題

如圖,圓心角都為90°的扇形OAB與扇形OCD疊放在一起,OA=1,OC=3,將扇形OAB繞O點旋轉一下得到右圖(0°<∠COA<90°),分別連接AC,BD,則下圖中陰影部分的面積為   

查看答案和解析>>

科目:初中數(shù)學 來源:2010-2011學年重慶市璧山縣丁家初中九年級(上)第二次樂學測試數(shù)學試卷(全冊內容)(解析版) 題型:填空題

如圖,圓心角都為90°的扇形OAB與扇形OCD疊放在一起,OA=1,OC=3,將扇形OAB繞O點旋轉一下得到右圖(0°<∠COA<90°),分別連接AC,BD,則下圖中陰影部分的面積為   

查看答案和解析>>

同步練習冊答案