(2006•蘭州)如圖,在△ABC中,D,E分別是AB,AC上的一點,BE與CD交于點O,給出下列四個條件:①∠DBO=∠ECO;②∠BDO=∠CEO;③BD=CE;④OB=OC.
(1)上述四個條件中,哪兩個可以判定△ABC是等腰三角形?
(2)選擇第(1)題中的一種情形為條件,試說明△ABC是等腰三角形.

【答案】分析:(1)要證ABC是等腰三角形,就要證∠ABC=∠ACB,根據(jù)已知條件即可找到證明∠ABC=∠ACB的組合;
(2)可利用△DOB與△EOC全等,得出OC=OB,再得出∠OCB與∠OBC相等,就能證明∠ABC與∠ACB相等.
解答:解:(1)①③,①④,②③和②④;

(2)以①④為條件,理由:
∵OB=OC,
∴∠OBC=∠OCB.
又∵∠DBO=∠ECO,
∴∠DBO+∠OBC=∠ECO+∠OCB,即∠ABC=∠ACB,
∴AB=AC,
∴△ABC是等腰三角形.
點評:此題主要考查利用等角對等邊來判定等腰三角形;題目對學生的要求比較高,利用等量加等量和相等是正確解答本題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:2006年全國中考數(shù)學試題匯編《二次函數(shù)》(05)(解析版) 題型:解答題

(2006•蘭州)如圖所示,有一座拋物線形拱橋,橋下面在正常水位AB時,寬20m,水位上升3m就達到警戒線CD,這時水面寬度為10m.
(1)在如圖的坐標系中求拋物線的解析式;
(2)若洪水到來時,水位以每小時0.2m的速度上升,從警戒線開始,再持續(xù)多少小時才能到達拱橋頂?

查看答案和解析>>

科目:初中數(shù)學 來源:2009年廣東省潮州市潮安縣松昌實驗學校中考數(shù)學一模試卷(解析版) 題型:解答題

(2006•蘭州)如圖所示,有一座拋物線形拱橋,橋下面在正常水位AB時,寬20m,水位上升3m就達到警戒線CD,這時水面寬度為10m.
(1)在如圖的坐標系中求拋物線的解析式;
(2)若洪水到來時,水位以每小時0.2m的速度上升,從警戒線開始,再持續(xù)多少小時才能到達拱橋頂?

查看答案和解析>>

科目:初中數(shù)學 來源:2006年甘肅省蘭州市中考數(shù)學試卷(解析版) 題型:解答題

(2006•蘭州)如圖所示,有一座拋物線形拱橋,橋下面在正常水位AB時,寬20m,水位上升3m就達到警戒線CD,這時水面寬度為10m.
(1)在如圖的坐標系中求拋物線的解析式;
(2)若洪水到來時,水位以每小時0.2m的速度上升,從警戒線開始,再持續(xù)多少小時才能到達拱橋頂?

查看答案和解析>>

科目:初中數(shù)學 來源:2000年全國中考數(shù)學試題匯編《圓》(02)(解析版) 題型:選擇題

(2006•蘭州)如圖,在直角梯形ABCD中,AB⊥BC,AD=1,BC=3,CD=4,EF為梯形的中位線,DH為梯形的高,則下列結(jié)論:①∠BCD=60°;②四邊形EHCF為菱形;③S△BEH=S△CEH;④以AB為直徑的圓與CD相切于點F,其中正確結(jié)論的個數(shù)為( )

A.4
B.3
C.2
D.1

查看答案和解析>>

科目:初中數(shù)學 來源:2005年廣西玉林市中考數(shù)學試卷(解析版) 題型:選擇題

(2006•蘭州)如圖,P1、P2、P3是雙曲線上的三點.過這三點分別作y軸的垂線,得到三個三角形P1A10,P2A20,P3A30,設它們的面積分別是S1、S2、S3,則( )

A.S1<S2<S3
B.S2<S1<S3
C.S1<S3<S2
D.S1=S2=S3

查看答案和解析>>

同步練習冊答案