如圖,在△ABC中,CD與CF分別是△ABC的內角、外角平分線,DF∥BC交AC于點E.試說明:
(1)△DCF為直角三角形;
(2)DE=EF.

證明:(1)∵CD與CF分別是△ABC的內角、外角平分線,
∴∠DCE=∠ACB,∠ECF=∠ACG,
∵∠ACB+∠ACG=180°,
∴∠DCE+∠ECF=90°,
∴△DCF為直角三角形;

(2)∵DF∥BC,
∴∠EDC=∠BCD,
∵∠ECD=∠BCD,
∴∠EDC=∠ECD,
∴ED=EC,
同理,EF=EC,
∴DE=EF.
分析:(1)根據(jù)角平分線定義得出∠DCE=∠ACB,∠ECF=∠ACG,從而得出∠DCF=90°;
(2)再由平行線的性質得出∠EDC=∠BCD,即可得ED=EC.
點評:本題考查了等腰三角形的判定和性質以及平行線的性質,是基礎知識比較簡單.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

20、如圖,在△ABC中,∠BAC=45°,現(xiàn)將△ABC繞點A逆時針旋轉30°至△ADE的位置,使AC⊥DE,則∠B=
75
度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網如圖,在△ABC中,∠ACB=90°,AC=BC=1,取斜邊的中點,向斜邊作垂線,畫出一個新的等腰三角形,如此繼續(xù)下去,直到所畫出的直角三角形的斜邊與△ABC的BC重疊,這時這個三角形的斜邊為
( 。
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

2、如圖,在△ABC中,DE∥BC,那么圖中與∠1相等的角是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網如圖,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

14、如圖,在△ABC中,AB=BC,邊BC的垂直平分線分別交AB、BC于點E、D,若BC=10,AC=6cm,則△ACE的周長是
16
cm.

查看答案和解析>>

同步練習冊答案