精英家教網 > 初中數學 > 題目詳情
二次函數y=ax2+bx+c(a≠0)的圖象如圖所示,下列結論中:
①b>0;②c<0;③|a+c|<|b|;④4a+2b+c>0.
其中正確的結論有    (填寫序號).
【答案】分析:根據拋物線開口方向得到a<0,根據拋物線對稱軸可得到b>0;根據拋物線與y軸的交點在x軸下方,得到c<0;由x=1,a+b+c>0,即a+c>-b,利用a+c<0,即可得到
|a+c|<|b|;根據拋物線的對稱性可得到拋物線與x軸的一個交點在(2,0)和(1,0)之間,則x=2時,y<0,可得到4a-2b+c<0.
解答:解:∵拋物線開口向下,
∴a<0,
∵對稱軸為直線x=-=1,
∴b=-2a>0,所以①正確;
∵拋物線與y軸的交點在x軸下方,
∴c<0,所以②正確;
∵x=1時,y>0,
∴a+b+c>0,即a+c>-b,
而a+c<0,
∴-b<a+c<0,
∴|a+c|<|b|,所以③正確;
∵拋物線與x軸的一個交點在原點和(1,0)之間,
∴拋物線與x軸的另一個交點在(2,0)和(1,0)之間,
∴x=2時,y<0,即4a-2b+c<0,所以④錯誤.
故答案為①②③.
點評:本題考查了二次函數的圖象與系數的關系:二次函數y=ax2+bx+c(a≠0)的圖象為拋物線,當a>0,拋物線開口向上;對稱軸為直線x=-;拋物線與y軸的交點坐標為(0,c);當b2-4ac>0,拋物線與x軸有兩個交點;當b2-4ac=0,拋物線與x軸有一個交點;當b2-4ac<0,拋物線與x軸沒有交點.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

如圖,拋物線y=ax2+bx+c(a≠0)與x軸交于A(-3,0)、B兩點,與y軸交于精英家教網點C(0,
3
)
,當x=-4和x=2時,二次函數y=ax2+bx+c(a≠0)的函數值y相等,連接AC、BC.
(1)求實數a,b,c的值;
(2)若點M、N同時從B點出發(fā),均以每秒1個單位長度的速度分別沿BA、BC邊運動,其中一個點到達終點時,另一點也隨之停止運動,當運動時間為t秒時,連接MN,將△BMN沿MN翻折,B點恰好落在AC邊上的P處,求t的值及點P的坐標;
(3)在(2)的條件下,拋物線的對稱軸上是否存在點Q,使得以B,N,Q為頂點的三角形與△ABC相似?若存在,請求出點Q的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

二次函數y=ax2+bx+c,當x=
12
時,有最大值25,而方程ax2+bx+c=0的兩根α、β,滿足α33=19,求a、b、c.

查看答案和解析>>

科目:初中數學 來源: 題型:

如果二次函數y=ax2+bx+c的圖象的頂點坐標是(2,4),且直線y=x+4依次與y軸和拋物線相交于P、Q、R三點,PQ:QR=1:3,求這個二次函數解析式.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖為二次函數y=ax2+bx+c(a≠0)的圖象,則下列說法:①abc>0;②2a+b=0;③a+b+c>0;④當-1<x<3時,y>0.其中正確結論的序號是
②③④
②③④

查看答案和解析>>

科目:初中數學 來源: 題型:

(2012•孝感)二次函數y=ax2+bx+c(a,b,c是常數,a≠0)圖象的對稱軸是直線x=1,其圖象的一部分如圖所示.對于下列說法:
①abc<0;②a-b+c<0;③3a+c<0;④當-1<x<3時,y>0.
其中正確的是
①②③
①②③
(把正確的序號都填上).

查看答案和解析>>

同步練習冊答案