精英家教網 > 初中數學 > 題目詳情

      時,關于的方程可用公式法求解。

 

【答案】

【解析】

試題分析:關于x的方程可用公式法求解,則,即可得到關于t的不等式.

由題意得,解得

考點:本題考查了一元二次方程的根的判別式

點評:一元二次方程(a≠0,a,b,c為常數)根的判別式為.當△>0,方程有兩個不相等的實數根;當△=0,方程有兩個相等的實數根;當△<0,方程沒有實數根.

 

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:閱讀理解

閱讀下面解題過程,然后解答問題:
解方程:x4-x2-6=0
解:設y=x2,則原方程可化為y2-y-6=0,解得:y1=3,y2=-2
當y=3時,x2=3,?∴x=±
3
;
當y=-2時,x2=-2,原方程無實數根.
∴原方程的解為:x1=
3
, x2=-
3

這種解方程的方法叫“換元法”.
仔細體會這種方法的過程步驟,然后按照上述步驟解下列方程:
x+1
x
-
2x
x+1
=1

解:設y=
x
x+1
,則原方程可化為關于y的方程:
 

解得:y1=
????
.
, y2=
????
.
?

請你將后面的過程補充完整:

查看答案和解析>>

科目:初中數學 來源: 題型:

解答題
①當m取何值時,關于x的方程:3x-2=4與5x-1=-m的解相等?
②一堆小麥用8個編織袋來裝,以每袋55千克為標準,超過的記作為正數,不足的記作為負數,現記錄如下:(單位:千克)
+2,-3,+2,+1,-2,-1,0,-2
(1)這堆小麥共重多少千克?
(2)若每千克小麥的售價為1.2元,則這堆小麥可賣多少錢?
③探索規(guī)律:觀察下面由“※”組成的圖案和算式,解答問題:精英家教網
(1)請猜想1+3+5+7+9+…+19=
 
;
(2)請猜想1+3+5+7+9+…+(2n-1)+(2n+1)=
 
;
(3)請用上述規(guī)律計算:103+105+107+…+2003+2005.
④在左邊的日歷中,用一個正方形任意圈出二行二列四個數,
精英家教網精英家教網
若在第二行第二列的那個數表示為a,其余各數分別為b,c,d.
精英家教網
(1)分別用含a的代數式表示b,c,d這三個數.
(2)求這四個數的和(用含a的代數式表示,要求合并同類項化簡)
(3)這四個數的和會等于51嗎?如果會,請算出此時a的值,如果不會,說明理由.(要求列方程解答)

查看答案和解析>>

科目:初中數學 來源: 題型:閱讀理解

閱讀下列材料:
為解方程(x2-1)2-5(x2-1)+4=0,我們可以將x2-1看作一個整體,設x2-1=y,則原方程可化為y2-5y+4=0,解得y1=1,y2=4.
當y1=1時,x2-1=1,∴x=±
2
;當y2=4時,x2-1=4,∴x=±
5

因此原方程的解為:x1=
2
x2=-
2
,x3=
5
,x4=-
5

(1)已知方程
1
x2-2x
=x2-2x-3
,如果設x2-2x=y,那么原方程可化為
 
(寫成關于y的一元二次方程的一般形式).
(2)根據閱讀材料,解方程:x(x+3)(x2+3x+2)=24.

查看答案和解析>>

科目:初中數學 來源: 題型:閱讀理解

(2013•青島)在前面的學習中,我們通過對同一面積的不同表達和比較,根據圖1和圖2發(fā)現并驗證了平方差公式和完全平方公式.
這種利用面積關系解決問題的方法,使抽象的數量關系因幾何直觀而形象化.

【研究速算】
提出問題:47×43,56×54,79×71,…是一些十位數字相同,且個位數字之和是10的兩個兩位數相乘的算式,是否可以找到一種速算方法?
幾何建模:
用矩形的面積表示兩個正數的乘積,以47×43為例:
(1)畫長為47,寬為43的矩形,如圖3,將這個47×43的矩形從右邊切下長40,寬3的一條,拼接到原矩形上面.
(2)分析:原矩形面積可以有兩種不同的表達方式:47×43的矩形面積或(40+7+3)×40的矩形與右上角3×7的矩形面積之和,即47×43=(40+10)×40+3×7=5×4×100+3×7=2021.
用文字表述47×43的速算方法是:十位數字4加1的和與4相乘,再乘以100,加上個位數字3與7的積,構成運算結果.
歸納提煉:
兩個十位數字相同,并且個位數字之和是10的兩位數相乘的速算方法是(用文字表述)
十位數字加1的和與十位數字相乘,再乘以100,加上兩個個位數字的積,構成運算結果
十位數字加1的和與十位數字相乘,再乘以100,加上兩個個位數字的積,構成運算結果

【研究方程】
提出問題:怎樣圖解一元二次方程x2+2x-35=0(x>0)?
幾何建模:
(1)變形:x(x+2)=35.
(2)畫四個長為x+2,寬為x的矩形,構造圖4
(3)分析:圖中的大正方形面積可以有兩種不同的表達方式,(x+x+2)2或四個長x+2,寬x的矩形面積之和,加上中間邊長為2的小正方形面積.
即(x+x+2)2=4x(x+2)+22
∵x(x+2)=35
∴(x+x+2)2=4×35+22
∴(2x+2)2=144
∵x>0
∴x=5
歸納提煉:求關于x的一元二次方程x(x+b)=c(x>0,b>0,c>0)的解.
要求參照上述研究方法,畫出示意圖,并寫出幾何建模步驟(用鋼筆或圓珠筆畫圖,并注明相關線段的長)
【研究不等關系】
提出問題:怎樣運用矩形面積表示(y+3)(y+2)與2y+5的大小關系(其中y>0)?
幾何建模:
(1)畫長y+3,寬y+2的矩形,按圖5方式分割
(2)變形:2y+5=(y+3)+(y+2)
(3)分析:圖5中大矩形的面積可以表示為(y+3)(y+2);陰影部分面積可以表示為(y+3)×1,畫點部分部分的面積可表示為y+2,由圖形的部分與整體的關系可知(y+3)(y+2)>(y+3)+(y+2),即(y+3)(y+2)>2y+5
歸納提煉:
當a>2,b>2時,表示ab與a+b的大小關系.
根據題意,設a=2+m,b=2+n(m>0,n>0),要求參照上述研究方法,畫出示意圖,并寫出幾何建模步驟(用鋼筆或圓珠筆畫圖并注明相關線段的長)

查看答案和解析>>

科目:初中數學 來源:北京月考題 題型:解答題

先閱讀下列解題過程,然后解答后面兩個問題.解方程:.解:當時,原方程可化為,解得;當時,原方程可化為,解得.所以原方程的解是
①解方程:
②當為何值時,關于的方程⑴無解;⑵只有一個解;⑶有兩個解

查看答案和解析>>

同步練習冊答案