在△ABC中,已知AC=13,BC=10,AB的垂直平分線交AB于點D,交AC于點 E,則△BCE的周長為   
【答案】分析:由已知條件,根據(jù)垂直平分線的性質得到線段相等,由△BCE的周長=EC+BE+BC得到答案.
解答:解:AB的垂直平分線交AB于點D,所以EA=BE.
∵AC=13,BC=10,
∴△BCE的周長是EC+BE+BC=BC+CE+EA=AC+BC=13+10=23,
故答案為23.
點評:本題考查了垂直平分線的性質;由于已知三角形的兩條邊長,根據(jù)垂直平分線的性質,求出另一條的長,相加即可.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

26、(1)在△ABC中,已知∠B=∠C+20°,∠A+∠B=140°,求△ABC的各個內角的度數(shù)是多少?
(2)如圖,將△ABC紙片沿MN折疊所得的粗實線圍成的圖形的面積與原△ABC的面積之比為3:4,且圖中3個陰影三角形的面積之和為12cm2,則重疊部分的面積為多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2009•雅安)在△ABC中,已知∠A、∠B都是銳角,且sinA=
3
2
,tanB=1,則∠C的度數(shù)為( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

在△ABC中,已知∠A=80°,則∠B、∠C的角平分線相交所成的鈍角為
130°
130°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

在△ABC中,已知AB=AC,∠A=36°,AB的垂直平分線MN交AC于D.在下列結論中:①∠C=72°;②BD是∠ABC的平分線;③∠BDC=100°;④△ABD是等腰三角形;⑤AD=BD=BC.上述結論中,正確的有
①②④⑤
①②④⑤
.(填寫序號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

在△ABC中,已知∠A=∠C-∠B,且∠A=70°,則∠B的度數(shù)=
20°
20°

查看答案和解析>>

同步練習冊答案