已知拋物線y=ax2-x+c經(jīng)過點Q(-2,
3
2
),且它的頂點P的橫坐標為-1.設(shè)拋物線與x軸相交于A、B兩點,如圖.
(1)求拋物線的解析式;
(2)求A、B兩點的坐標;
(3)設(shè)PB于y軸交于C點,求△ABC的面積.
(1)由題意得
3
2
=a(-2)2-(-2)+c
-
-1
2a
=-1
,
解得a=-
1
2
,c=
3
2

∴拋物線的解析式為y=-
1
2
x2-x+
3
2


(2)把y=0代入y=-
1
2
x2-x+
3
2
得:-
1
2
x2-x+
3
2
=0,
整理得x2+2x-3=0.
變形為(x+3)(x-1)=0,
解得x1=-3,x2=1.
∵拋物線與x軸的交點A點在x軸負半軸,B點在x軸正半軸,
∴A(-3,0),B(1,0).

(3)將x=-l代入y=-
1
2
x2-x+
3
2
中,
得y=2,即P(-1,2).
設(shè)直線PB的解析式為y=kx+b,
將P(-1,2),B(1,0)代入得:
2=-k+b
0=k+b

解得:k=-1,b=1.
即直線PB的解析式為y=-x+1.
把x=0代入y=-x+1中,則y=1,即OC=1.
又∵AB=AO+OB=1+3=4,
∴S△ABC=
1
2
×AB×OC=
1
2
×4×1=2,即△ABC的面積為2.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:不詳 題型:解答題

已知:拋物線y=x2+2x-3與x軸的兩個交點分別為A、B,點A在點B的左側(cè),與y軸交于點C,頂點為D,直線y=kx+b經(jīng)過點A、C;
(1)求點D的坐標和直線AC的解析式;
(2)點P為拋物線上的一個動點,求使得△ACP的面積與△ACD的面積相等的點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

己知:如圖1,拋物線y=ax2-2ax+c(a≠0)與y軸交于點C(O,-4),與x軸交于A、B兩點,點A的坐標為(4,0).
(1)求該拋物線的函數(shù)解析式;
(2)點P(t,O)是線段AB上一動點(不與A、B重合),過P點作PEAC,交BC于E,連接CP,求△CPE的面積S與t的函數(shù)關(guān)系式,并指出t的取值范圍;
(3)如圖2,若平行于x軸的動直線r與該拋物線交于點Q,與直線AC交于F,點D的坐標為(2,0).問是否存在這樣的直線r,使得△0DF為等腰三角形?若存在,請求出點Q坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,用一段長為30米的籬笆圍成一個一邊靠墻(墻的長度不限)的矩形菜園ABCD,設(shè)AB邊長為x米,則菜園的面積y(米2)與x(米)的關(guān)系式為______.(不要求寫出自變量x的取值范圍)

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

二次函數(shù)y=
2
3
x2的圖象如圖所示,點A0位于坐標原點,A1,A2,A3,…,A2010在y軸的正半軸上,B1,B2,B3,…,B2010在二次函數(shù)第一象限的圖象上,若△A0B1A1,△A1B2A2,△A2B3A3,…,△A2009B2010A2010都為等邊三角形,請計算△A2009B2010A2010的邊長=______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

二次函數(shù)y=ax2+bx+c的值恒為正,則a,b,c應(yīng)滿足( 。
A.a(chǎn)>0,b2-4ac>0B.a(chǎn)>0,b2-4ac<0
C.a(chǎn)<0,b2-4ac>0D.a(chǎn)<0,b2-4ac<0

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,拋物線y=-x2+2(m+1)x+m+3與x軸交于A,B兩點,若OA:OB=3:1,求m的值.______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知拋物線y=x2-2x-3與x軸相交于A、B兩點,拋物線上有一點P,且△ABP的面積為6.
(1)求A與B的坐標;
(2)求點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

不論x為何值,函數(shù)y=ax2+bx+c(a≠0)的值恒大于0的條件是______.

查看答案和解析>>

同步練習冊答案