【題目】用正負(fù)數(shù)表示變化量時,規(guī)定上升為正,下降為負(fù)。登山隊攀登一座山峰,每升高1千米氣溫的變化量為﹣5℃,則攀登高3㎞后,氣溫的變化量為______℃
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知三角形的兩邊長分別為4cm和9cm,則下列長度的四條線段中能作為第三邊的是( )
A. 13cm B. 6cm C. 5cm D. 4cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有一個兩位數(shù),其十位數(shù)字為a,個位數(shù)字為b,將該兩位數(shù)的兩個數(shù)字顛倒,得到一個新的兩位數(shù),那么這個新兩位數(shù)十位上的數(shù)字與個位上的數(shù)字的和與這個新兩位數(shù)的積用代數(shù)式表示為__
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】兩個角的大小之比是7:3,他們的差是72°,則這兩個角的關(guān)系是______﹙選填:相等或互余或互補(bǔ)﹚
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了讓更多的失學(xué)兒童重返校園,某社區(qū)組織“獻(xiàn)愛心手拉手”捐款活動,對社區(qū)部分捐款戶數(shù)進(jìn)行調(diào)查和分組統(tǒng)計后,將數(shù)據(jù)整理成如圖所示的統(tǒng)計表和統(tǒng)計圖(圖中信息不完整).已知A、B兩組捐款戶數(shù)的比為1:5.
組別 | 捐款額(x)元 | 戶數(shù) |
A | 1≤x<50 | a |
B | 50≤x<100 | 10 |
C | 100≤x<150 | |
D | 150≤x<200 | |
E | x≥200 |
請結(jié)合以上信息解答下列問題.
(1)a= ,本次調(diào)查樣本的容量是 ;
(2)補(bǔ)全“捐款戶數(shù)分組統(tǒng)計表和捐款戶數(shù)統(tǒng)計圖1”;
(3)若該社區(qū)有1500戶住戶,請根據(jù)以上信息估計,全社區(qū)捐款不少于150元的戶數(shù)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】【問題背景】
在四邊形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°,E、F分別是BC、CD上的點,且∠EAF=60°,試探究圖1中線段BE、EF、FD之間的數(shù)量關(guān)系.
【初步探索】
小亮同學(xué)認(rèn)為:延長FD到點G,使DG=BE,連接AG,先證明△ABE≌△ADG,再證明△AEF≌△AGF,則可得到 BE、EF、FD之間的數(shù)量關(guān)系是 .
【探索延伸】
在四邊形ABCD中如圖2,AB=AD,∠B+∠D=180°,E、F分別是BC、CD上的點,∠EAF=∠BAD,上述結(jié)論是否任然成立?說明理由.
【結(jié)論運(yùn)用】
如圖3,在某次軍事演習(xí)中,艦艇甲在指揮中心(O處)北偏西30°的A處,艦艇乙在指揮中心南偏東70°的B處,并且兩艦艇到指揮中心的距離相等,接到行動指令后,艦艇甲向正東方向以60海里/小時的速度前進(jìn),艦艇乙沿北偏東50°的方向以80海里/小時的速度前進(jìn)1.5小時后,指揮中心觀測到甲、乙兩艦艇分別到達(dá)E,F處,且兩艦艇之間的夾角(∠EOF)為70°,試求此時兩艦艇之間的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在正方形網(wǎng)格中,每個小正方形的邊長均為1個單位長度,△ABC的三個頂點的位置如圖所示,現(xiàn)將△ABC平移,使點A變換為點A′,點B′、C′分別是B、C的對應(yīng)點.
(1)請畫出平移后的△A′B′C′,并求△A′B′C′的面積;
(2)若連接AA′,CC′,則這兩條線段之間的關(guān)系是 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com