如圖,AB是圓O的直徑,AB=10,點C是圓O上一動點(與A,B不重合),∠ACB的平分線交圓O于D.
(1)判斷△ABD的形狀,并證明你的結(jié)論;
(2)若I是△ABC的內(nèi)心,當點C運動時,CI、DI中是否存在長度保持不變的線段?如果存在,請指出并求其長度;如果不存在,請說明理由.

解:(1)△ABD是等腰直角三角形.理由如下:
∵AB是圓O的直徑,
∴∠ADB=90°,
∵CD平分∠ACB,
=,
∴AD=BD,
∴△ABD是等腰直角三角形;

(2)DI的長度不變,且DI=
在Rt△ABD中,
∵AD=BD,AB=10,
∴BD=
連接OI,
∵I是△ABC的內(nèi)心,
∴∠4=∠5,
∵由(1)可知=,
∴∠1=∠2,
∵∠3是△BCI的外角,
∴∠3=∠1+∠4=∠2+∠5,
∴DI=BD是定值,即DI=BD=
分析:(1)先根據(jù)圓周角定理得出∠ADB=90°,根據(jù)CD平分∠ACB可知=,所以AD=BD,故可得出結(jié)論;
(2)先根據(jù)勾股定理求出BD的長,連接OI,則∠4=∠5,由(1)可知=,所以∠1=∠2,再由三角形外角的性質(zhì)可知∠3=∠1+∠4=∠2+∠5,故可得出DI=BD是定值.
點評:本題考查的是圓周角定理、等腰直角三角形、圓心角、弧、弦的關(guān)系等知識,根據(jù)題意作出輔助線,構(gòu)造出等腰三角形是解答此題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

如圖,在平面直角坐標系內(nèi),以y軸為對稱軸的拋物線經(jīng)過直y=-
3
3
x+2與y軸的交點A和點M(-
3
2
,0).
(1)求這條拋物線所對應的二次函數(shù)的關(guān)系式;
(2)將(1)中所求拋物線沿x軸向右平移.①在題目所給的圖中畫出沿x軸平移后經(jīng)過原點的拋物線大致圖象;②設沿x軸向右平移后經(jīng)過原點的拋物線對稱軸與直線AB相交于C點.判斷以O為圓心,OC為半徑的圓與直線AB的位置關(guān)系,并說明理由;
(3)P點是沿x軸向右平移后經(jīng)過原點的拋物線對稱軸上的點,求P點的坐標,使得以O,A,C,P四點為頂點的精英家教網(wǎng)四邊形是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學 來源:第2章《二次函數(shù)》中考題集(35):2.7 最大面積是多少(解析版) 題型:解答題

如圖,在平面直角坐標系內(nèi),以y軸為對稱軸的拋物線經(jīng)過直y=-x+2與y軸的交點A和點M(-,0).
(1)求這條拋物線所對應的二次函數(shù)的關(guān)系式;
(2)將(1)中所求拋物線沿x軸向右平移.①在題目所給的圖中畫出沿x軸平移后經(jīng)過原點的拋物線大致圖象;②設沿x軸向右平移后經(jīng)過原點的拋物線對稱軸與直線AB相交于C點.判斷以O為圓心,OC為半徑的圓與直線AB的位置關(guān)系,并說明理由;
(3)P點是沿x軸向右平移后經(jīng)過原點的拋物線對稱軸上的點,求P點的坐標,使得以O,A,C,P四點為頂點的四邊形是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學 來源:第6章《二次函數(shù)》中考題集(38):6.4 二次函數(shù)的應用(解析版) 題型:解答題

如圖,在平面直角坐標系內(nèi),以y軸為對稱軸的拋物線經(jīng)過直y=-x+2與y軸的交點A和點M(-,0).
(1)求這條拋物線所對應的二次函數(shù)的關(guān)系式;
(2)將(1)中所求拋物線沿x軸向右平移.①在題目所給的圖中畫出沿x軸平移后經(jīng)過原點的拋物線大致圖象;②設沿x軸向右平移后經(jīng)過原點的拋物線對稱軸與直線AB相交于C點.判斷以O為圓心,OC為半徑的圓與直線AB的位置關(guān)系,并說明理由;
(3)P點是沿x軸向右平移后經(jīng)過原點的拋物線對稱軸上的點,求P點的坐標,使得以O,A,C,P四點為頂點的四邊形是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學 來源:第27章《二次函數(shù)》中考題集(37):27.3 實踐與探索(解析版) 題型:解答題

如圖,在平面直角坐標系內(nèi),以y軸為對稱軸的拋物線經(jīng)過直y=-x+2與y軸的交點A和點M(-,0).
(1)求這條拋物線所對應的二次函數(shù)的關(guān)系式;
(2)將(1)中所求拋物線沿x軸向右平移.①在題目所給的圖中畫出沿x軸平移后經(jīng)過原點的拋物線大致圖象;②設沿x軸向右平移后經(jīng)過原點的拋物線對稱軸與直線AB相交于C點.判斷以O為圓心,OC為半徑的圓與直線AB的位置關(guān)系,并說明理由;
(3)P點是沿x軸向右平移后經(jīng)過原點的拋物線對稱軸上的點,求P點的坐標,使得以O,A,C,P四點為頂點的四邊形是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學 來源:2008年四川省眉山市中考數(shù)學試卷(解析版) 題型:解答題

(2008•眉山)如圖,在平面直角坐標系內(nèi),以y軸為對稱軸的拋物線經(jīng)過直y=-x+2與y軸的交點A和點M(-,0).
(1)求這條拋物線所對應的二次函數(shù)的關(guān)系式;
(2)將(1)中所求拋物線沿x軸向右平移.①在題目所給的圖中畫出沿x軸平移后經(jīng)過原點的拋物線大致圖象;②設沿x軸向右平移后經(jīng)過原點的拋物線對稱軸與直線AB相交于C點.判斷以O為圓心,OC為半徑的圓與直線AB的位置關(guān)系,并說明理由;
(3)P點是沿x軸向右平移后經(jīng)過原點的拋物線對稱軸上的點,求P點的坐標,使得以O,A,C,P四點為頂點的四邊形是平行四邊形.

查看答案和解析>>

同步練習冊答案