Rt△ABC中,斜邊AB=1,則AB2+BC2+AC2的值是________.

2
分析:先畫圖,再利用勾股定理可求BC2+AC2的值,從而易求AB2+BC2+AC2的值.
解答:解:如右圖所示,
在Rt△ABC中,AB2=BC2+AC2,
又∵AB=1,
∴BC2+AC2,=AB2=1,
∴AB2+BC2+AC2=1+1=2.
故答案是2.
點評:本題考查了勾股定理,直角三角形中,兩直角邊的平方和等于斜邊的平方.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖1,Rt△ABC中,斜邊AB在x軸上,點C在y軸上,且OC=2,OA:OB=1:4,拋物線y=ax2+bx+c經(jīng)過A、B、C三點.
(1)求此拋物線的解析式;
(2)若直線y=x+b與Rt△ABC相交,所截得的三角形面積是原Rt△ABC面積的
310
,求b的值;
(3)將△OAC繞原點O逆時針旋轉(zhuǎn)90°后得到△OEF,如圖2,再將△OEF繞平面內(nèi)某點旋轉(zhuǎn)180°后得△MNQ(點M、N、Q分別與點E、F、O對應(yīng)),使點M,N在拋物線上,求點M,N的坐標(biāo).
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

15、在Rt△ABC中,斜邊上的中線長為5cm,則斜邊長為
10

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

9、在Rt△ABC中,斜邊AB=2,則AB2+AC2+BC2等于(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在Rt△ABC中,斜邊AB的長為13cm,則斜邊上的中線CD的長為
6.5
6.5
cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知在Rt△ABC中,斜邊AB=5,BC=3,以點A為旋轉(zhuǎn)中心,旋轉(zhuǎn)這個三角形至△AB'C'的位置,那么當(dāng)點C'落在直線AB上時,BB'=
 

查看答案和解析>>

同步練習(xí)冊答案