如圖,O是菱形ABCD的對(duì)角線(xiàn)AC、BD的交點(diǎn),E、F分別是OA、OC的中點(diǎn).下列結(jié)論:①S△ADE=S△EOD;②四邊形BFDE也是菱形;③四邊形ABCD的面積為EF×BD;④∠ADE=∠EDO;⑤△DEF是軸對(duì)稱(chēng)圖形.其中正確的結(jié)論有


  1. A.
    5個(gè)
  2. B.
    4個(gè)
  3. C.
    3個(gè)
  4. D.
    2個(gè)
B
分析:①正確,根據(jù)三角形的面積公式可得到結(jié)論.
②根據(jù)已知條件利用菱形的判定定理可證得其正確.
③正確,根據(jù)菱形的面積等于對(duì)角線(xiàn)乘積的一半即可求得.
④不正確,根據(jù)已知可求得∠FDO=∠EDO,而無(wú)法求得∠ADE=∠EDO.
⑤正確,由已知可證得△DEO≌△DFO,從而可推出結(jié)論正確.
解答:①正確
∵E、F分別是OA、OC的中點(diǎn).
∴AE=OE.
∵S△ADE=×AE×OD=×OE×OD=S△EOD
∴S△ADE=S△EOD.
②正確
∵四邊形ABCD是菱形,E,F(xiàn)分別是OA,OC的中點(diǎn).
∴EF⊥OD,OE=OF.
∵OD=OD.
∴DE=DF.
同理:BE=BF
∴四邊形BFDE是菱形.
③正確
∵菱形ABCD的面積=AC×BD.
∵E、F分別是OA、OC的中點(diǎn).
∴EF=AC.
∴菱形ABCD的面積=EF×BD.
④不正確
由已知可求得∠FDO=∠EDO,而無(wú)法求得∠ADE=∠EDO.
⑤正確
∵EF⊥OD,OE=OF,OD=OD.
∴△DEO≌△DFO.
∴△DEF是軸對(duì)稱(chēng)圖形.
∴正確的結(jié)論有四個(gè),分別是①②③⑤,故選B.
點(diǎn)評(píng):此題主要考查學(xué)生對(duì)菱形的性質(zhì)等知識(shí)的理解及運(yùn)用能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•渝北區(qū)一模)如圖四邊形ABCD是菱形,且∠ABC=60,△ABE是等邊三角形,M為對(duì)角線(xiàn)BD(不含B點(diǎn))上任意一點(diǎn),將BM繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°得到BN,連接EN、AM、CM,則下列五個(gè)結(jié)論中正確的是(  )
①若菱形ABCD的邊長(zhǎng)為1,則AM+CM的最小值1;
②△AMB≌△ENB;
③S四邊形AMBE=S四邊形ADCM;④連接AN,則AN⊥BE;
⑤當(dāng)AM+BM+CM的最小值為2
3
時(shí),菱形ABCD的邊長(zhǎng)為2.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2012年10月中考數(shù)學(xué)模擬試卷(9)(解析版) 題型:選擇題

如圖四邊形ABCD是菱形,且∠ABC=60,△ABE是等邊三角形,M為對(duì)角線(xiàn)BD(不含B點(diǎn))上任意一點(diǎn),將BM繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°得到BN,連接EN、AM、CM,則下列五個(gè)結(jié)論中正確的是( )
①若菱形ABCD的邊長(zhǎng)為1,則AM+CM的最小值1;
②△AMB≌△ENB;
③S四邊形AMBE=S四邊形ADCM;④連接AN,則AN⊥BE;
⑤當(dāng)AM+BM+CM的最小值為2時(shí),菱形ABCD的邊長(zhǎng)為2.

A.①②③
B.②④⑤
C.①②⑤
D.②③⑤

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2012年重慶市渝北區(qū)中考數(shù)學(xué)一模試卷(解析版) 題型:選擇題

如圖四邊形ABCD是菱形,且∠ABC=60,△ABE是等邊三角形,M為對(duì)角線(xiàn)BD(不含B點(diǎn))上任意一點(diǎn),將BM繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°得到BN,連接EN、AM、CM,則下列五個(gè)結(jié)論中正確的是( )
①若菱形ABCD的邊長(zhǎng)為1,則AM+CM的最小值1;
②△AMB≌△ENB;
③S四邊形AMBE=S四邊形ADCM;④連接AN,則AN⊥BE;
⑤當(dāng)AM+BM+CM的最小值為2時(shí),菱形ABCD的邊長(zhǎng)為2.

A.①②③
B.②④⑤
C.①②⑤
D.②③⑤

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2012年重慶市開(kāi)縣西街中學(xué)中考數(shù)學(xué)一模試卷(解析版) 題型:選擇題

如圖四邊形ABCD是菱形,且∠ABC=60,△ABE是等邊三角形,M為對(duì)角線(xiàn)BD(不含B點(diǎn))上任意一點(diǎn),將BM繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°得到BN,連接EN、AM、CM,則下列五個(gè)結(jié)論中正確的是( )
①若菱形ABCD的邊長(zhǎng)為1,則AM+CM的最小值1;
②△AMB≌△ENB;
③S四邊形AMBE=S四邊形ADCM;④連接AN,則AN⊥BE;
⑤當(dāng)AM+BM+CM的最小值為2時(shí),菱形ABCD的邊長(zhǎng)為2.

A.①②③
B.②④⑤
C.①②⑤
D.②③⑤

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年重慶市開(kāi)縣西街中學(xué)九年級(jí)模擬考試數(shù)學(xué)試卷(一)(解析版) 題型:選擇題

如圖四邊形ABCD是菱形,且∠ABC=60,△ABE是等邊三角形,M為對(duì)角線(xiàn)BD(不含B點(diǎn))上任意一點(diǎn),將BM繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°得到BN,連接EN、AM、CM,則下列五個(gè)結(jié)論中正確的是( )
①若菱形ABCD的邊長(zhǎng)為1,則AM+CM的最小值1;
②△AMB≌△ENB;
③S四邊形AMBE=S四邊形ADCM;④連接AN,則AN⊥BE;
⑤當(dāng)AM+BM+CM的最小值為2時(shí),菱形ABCD的邊長(zhǎng)為2.

A.①②③
B.②④⑤
C.①②⑤
D.②③⑤

查看答案和解析>>

同步練習(xí)冊(cè)答案