,x. ,x.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:如圖,正方形ABCD的周長為4a,四邊形EFGH的四個(gè)頂點(diǎn)E、F、G、H分別在AB、BC、CD、DA上滑動(dòng),在滑動(dòng)過程中,始終有EH∥BD∥FG,且EH=FG,那么四邊形EFGH的周長是否可求?若能求出,它的周長是多少?若不能求出,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•普洱)如圖,在平面直角坐標(biāo)系中,拋物線y=-
12
x2+bx+c
經(jīng)過A(-2,0),C(4,0)兩點(diǎn),和y軸相交于點(diǎn)B,連接AB、BC.
(1)求拋物線的解析式(關(guān)系式).
(2)在第一象限外,是否存在點(diǎn)E,使得以BC為直角邊的△BCE和Rt△AOB相似?若存在,請簡要說明如何找到符合條件的點(diǎn)E,然后直接寫出點(diǎn)E的坐標(biāo),并判斷是否有滿足條件的點(diǎn)E在拋物線上;若不存在,請說明理由.
(3)在直線BC上方的拋物線上,找一點(diǎn)D,使S△BCD:S△ABC=1:4,并求出此時(shí)點(diǎn)D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•自貢)如圖,已知拋物線y=ax2+bx-2(a≠0)與x軸交于A、B兩點(diǎn),與y軸交于C點(diǎn),直線BD交拋物線于點(diǎn)D,并且D(2,3),tan∠DBA=
12

(1)求拋物線的解析式;
(2)已知點(diǎn)M為拋物線上一動(dòng)點(diǎn),且在第三象限,順次連接點(diǎn)B、M、C、A,求四邊形BMCA面積的最大值;
(3)在(2)中四邊形BMCA面積最大的條件下,過點(diǎn)M作直線平行于y軸,在這條直線上是否存在一個(gè)以Q點(diǎn)為圓心,OQ為半徑且與直線AC相切的圓?若存在,求出圓心Q的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)系中,將直線y=-
3
4
x-
3
2
沿x軸翻折,得到一條新直線與x軸交于點(diǎn)A,與y軸交于點(diǎn)B,將拋物線y=
2
3
x2
沿x軸平移,得到一條新拋物線與y軸交點(diǎn)于點(diǎn)C,與直線AB交于點(diǎn)E、F.
(1)求直線AB的解析式;
(2)若線段CF∥x軸,求平移后拋物線的解析式;
(3)在(2)的條件下,若點(diǎn)F在y軸右側(cè),過F作FH⊥x軸于點(diǎn)G,與直線y=-
3
4
x-
3
2
交點(diǎn)H.是否存在不過△AFH頂點(diǎn)同時(shí)平分△AFH的周長和面積的直線l?若存在,求直線l的解析式;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知關(guān)于x的一元二次方程kx2+2(k+4)x+(k-4)=0
(1)若方程有實(shí)數(shù)根,求k的取值范圍
(2)若等腰三角形ABC的邊長a=3,另兩邊b和c恰好是這個(gè)方程的兩個(gè)根,求△ABC的周長.

查看答案和解析>>

同步練習(xí)冊答案