【題目】如圖,在正方形ABCD中,E為BC邊上一點,連結(jié)AE.已知AB=8,CE=2,F(xiàn)是線段AE上一動點.若BF的延長線交正方形ABCD的一邊于點G,且滿足AE=BG,則 的值為 .
【答案】1或
【解析】解:①當(dāng)G在AD邊上時,∵AE=BG,AB=AB,∠BAG=∠ABE=90°,
∴△ABG≌△BAE,
∴AG=BE,
∵AG∥BE,
∴ = =1.②當(dāng)G′在CD上時,易證△ABE≌△BCG′,
∴∠BAE=∠CBG′,
∵∠CBG′+∠ABF′=90°,
∴∠BAE+∠ABF′=90°,
∴∠AF′B=90°,
∴BG′⊥AE,
∵AB=8.BE=6,
∴AE=BG′= =10,
∵ ABBE= AEBF′,
∴BF′= ,F(xiàn)′G′=10﹣ = ,
∴ = =
所以答案是1或 .
【考點精析】認真審題,首先需要了解正方形的性質(zhì)(正方形四個角都是直角,四條邊都相等;正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角;正方形的一條對角線把正方形分成兩個全等的等腰直角三角形;正方形的對角線與邊的夾角是45o;正方形的兩條對角線把這個正方形分成四個全等的等腰直角三角形),還要掌握平行線分線段成比例(三條平行線截兩條直線,所得的對應(yīng)線段成比例)的相關(guān)知識才是答題的關(guān)鍵.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,氣象部門觀測到距A市正南方向240km的B處有一臺風(fēng)中心,其中心最大風(fēng)力為12級,該臺風(fēng)中心正以20km/h的速度沿北偏東30°的BC方向移動,且臺風(fēng)中心風(fēng)力不變,已知每遠離臺風(fēng)中心20km,風(fēng)力就減弱一級,臺風(fēng)中心在移動的過程中,其周圍130km的范圍內(nèi)都要受到影響.
(1)A市是否會受到這次臺風(fēng)影響?若受臺風(fēng)影響,則所受的最大風(fēng)力是幾級?
(2)A市遭受到這次臺風(fēng)影響多長時間?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知菱形ABCD的對角線相交于點O,延長AB至點E,使BE=AB,連接CE.
(1)求證:BD=EC;
(2)若∠E=50°,求∠BAO的大。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在如圖所示的平面直角坐標(biāo)系中,拋物線y=﹣ x2+bx+c過點A(0,4)和C(8,0),點P(t,0)是線段OC上的動點,PB⊥PA,且PB= PA,過點B作x軸的垂線,過點A作y軸的垂線,兩直線相交于點D;
(1)求拋物線的解析式;
(2)當(dāng)t為何值時,點D落在拋物線上;
(3)是否存在t,使得以A,B,D為頂點的三角形與△AOP相似?若存在,求此時t的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某工廠需要在規(guī)定時間內(nèi)生產(chǎn)1400個某種零件,該工廠按一定速度加工5天后,發(fā)現(xiàn)按此速度加工下去會延期10天完工,于是又抽調(diào)了一批工人投入這種零件的生產(chǎn),使工作效率提高了50%,結(jié)果如期完成加工任務(wù).
(1)求該工廠前5天每天生產(chǎn)多少個這種零件;
(2)求規(guī)定時間是多少天.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個不透明的口袋中裝有若干個紅、黃、藍、綠四種顏色的小球,小球除顏色外完全相同,為估計該口袋中四種顏色的小球數(shù)量,每次從口袋中隨機摸出一球記下顏色并放回,重復(fù)多次試驗,匯總實驗結(jié)果繪制成如下不完整的條形統(tǒng)計圖和扇形統(tǒng)計圖.
根據(jù)以上信息解答下列問題:
(1)求實驗總次數(shù),并補全條形統(tǒng)計圖;
(2)扇形統(tǒng)計圖中,摸到黃色小球次數(shù)所在扇形的圓心角度數(shù)為多少度?
(3)已知該口袋中有10個紅球,請你根據(jù)實驗結(jié)果估計口袋中綠球的數(shù)量.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,三角形ABC(記作△ABC)在方格中,方格紙中的每個小方格都是邊長為1個單位的正方形,三個頂點的坐標(biāo)分別是A(-2,1),B(-3,-2),C(1,-2),先將△ABC向上平移3個單位長度,再向右平移2個單位長度,得到A1B1C1.
(1)在圖中畫出△A1B1C1;
(2)點A1,B1,C1的坐標(biāo)分別為 、 、 ;
(3)若y軸有一點P,使△PBC與△ABC面積相等,求出P點的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知等腰△ABC的底邊BC=13cm,D是腰AB上一點,且CD=12cm, BD=5cm.
(1)求證:△BDC是直角三角形;
(2)求△ABC的周長
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com