如圖,在梯形ABCD中,AD∥BC,AD=3,DC=5,AB=4,∠B=45°.動(dòng)點(diǎn)M從B點(diǎn)出發(fā)沿線段BC以每秒2個(gè)單位長(zhǎng)度的速度向終點(diǎn)C運(yùn)動(dòng);動(dòng)點(diǎn)N同時(shí)從C點(diǎn)出發(fā)沿線段CD以每秒1個(gè)單位長(zhǎng)度的速度向終點(diǎn)D運(yùn)動(dòng).設(shè)運(yùn)動(dòng)的時(shí)間為t秒.
【小題1】求BC的長(zhǎng)
【小題2】當(dāng)MN∥AB時(shí),求t的值
【小題3】試探究:t為何值時(shí),△MNC為等腰三角形.
【小題1】如圖①,過(guò)A、D分別作AK⊥BC于K,DH⊥BC于H,則四邊形ADHK是矩形.
∴KH=AD=3.
在Rt△ABK中,AK=AB•sin45°=4•=4BK=AB•cos45°=4=4.
在Rt△CDH中,由勾股定理得,HC==3.
∴BC=BK+KH+HC=4+3+3=10.(2分)
【小題2】如圖②,過(guò)D作DG∥AB交BC于G點(diǎn),則四邊形ADGB是平行四邊形.
∵M(jìn)N∥AB,
∴MN∥DG.
∴BG=AD=3.
∴GC=10﹣3=7.
由題意知,當(dāng)M、N運(yùn)動(dòng)到t秒時(shí),CN=t,CM=10﹣2t.
∵DG∥MN,
∴∠NMC=∠DGC.
又∠C=∠C,
∴△MNC∽△GDC.
∴,
即.
解得,.(3分)
【小題3】分三種情況討論:
①當(dāng)NC=MC時(shí),如圖③,即t=10﹣2t,
∴.
②當(dāng)MN=NC時(shí),如圖④,過(guò)N作NE⊥MC于E.
由等腰三角形三線合一性質(zhì)得
EC=MC=(10﹣2t)=5﹣t.
在Rt△CEN中,cosC==,
又在Rt△DHC中,cosC=,
∴.
解得t=.
③當(dāng)MN=MC時(shí),如圖⑤,過(guò)M作MF⊥CN于F點(diǎn).FC=NC=t.
(方法同②),
解得.
綜上所述,當(dāng)t=、t=或t=時(shí),△MNC為等腰三角形.(3分)
解析
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
A、3cm | B、7cm | C、3cm或7cm | D、2cm |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com