(2010•赤峰)分式方程+=0的解是( )
A.x=1
B.x=-1
C.x=0
D.x=
【答案】分析:本題考查解分式方程的能力,觀察可得最簡公分母是(x+1)(x-1),方程兩邊乘以最簡公分母,可以把分式方程化為整式方程,再求解.
解答:解:方程的兩邊同乘(x+1)(x-1),得
x-1+x+1=0,
解得x=0.
檢驗:把x=0代入(x+1)(x-1)=-1≠0.
∴原方程的解為:x=0.
故選C.
點評:解分式方程首先把分式方程轉(zhuǎn)化成整式方程,解分式方程一定注意要驗根.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2010年全國中考數(shù)學試題匯編《二次函數(shù)》(10)(解析版) 題型:解答題

(2010•赤峰)已知拋物線y=ax2+bx+c的頂點為A(3,-3),與x軸的一個交點為B(1,0).
(1)求拋物線的解析式.
(2)P是y軸上一個動點,求使P到A、B兩點的距離之和最小的點P的坐標.
(3)設拋物線與x軸的另一個交點為C.在拋物線上是否存在點M,使得△MBC的面積等于以點A、P、B、C為頂點的四邊形面積的三分之一?若存在,請求出所有符合條件的點M的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年內(nèi)蒙古赤峰市中考數(shù)學試卷(解析版) 題型:解答題

(2010•赤峰)已知拋物線y=ax2+bx+c的頂點為A(3,-3),與x軸的一個交點為B(1,0).
(1)求拋物線的解析式.
(2)P是y軸上一個動點,求使P到A、B兩點的距離之和最小的點P的坐標.
(3)設拋物線與x軸的另一個交點為C.在拋物線上是否存在點M,使得△MBC的面積等于以點A、P、B、C為頂點的四邊形面積的三分之一?若存在,請求出所有符合條件的點M的坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案