閱讀下列解題過程,借鑒其中一種方法解答后面給出的試題:
問題:某人買13 個雞蛋,5 個鴨蛋、9 個鵝蛋共用去了9.25 元;買2 個雞蛋,4 個鴨蛋、3 個鵝蛋共用去了3.20 元,試問只買雞蛋、鴨蛋、鵝蛋各一個共需多少元。
分析:設(shè)買雞蛋,鴨蛋、鵝蛋各一個分別需x 、y 、z 元,則需要求x+y+z 的值,
由題意,知
;
視x為常數(shù),將上述方程組看成是關(guān)于y、z的二元一次方程組,化“三元”為“二元”、化“二元”為“一元”從而獲解。
解法1:視x為常數(shù),依題意得
解這個關(guān)于y、z的二元一次方程組得
于是x+y+z=x+0.05+x+1-2x=1.05。
評注:也可以視z為常數(shù),將上述方程組看成是關(guān)于x、y的二元一次方程組。
解答方法同上,你不妨試試.分析:視x+y+z為整體,由(1)、(2)恒等變形得
5(x+y+x)+4(2x+z)=9.25,4(x+y+z)-(2x+z)=3.20。
解法2:設(shè)x+y+z=a,2x+z=b,代入(1)、(2)可以得到如下關(guān)于a、b的二元一次方程組
由⑤+4×⑥,得21a=22.05,a=1.05。
評注:運用整體的思想方法指導(dǎo)解題,視x+y+z,2x+z為整體,
令a=x+y+z,b=2x+z,代人①、②將原方程組轉(zhuǎn)化為關(guān)于a、b的二元一次方程組從而獲解。
請你運用以上介紹的任意一種方法解答如下數(shù)學(xué)競賽試題:購買五種教學(xué)用具A
1、A
2、A
3、A
4、A
5的件數(shù)和用錢總數(shù)列成下表: