(2006•哈爾濱)在平面直角坐標(biāo)系內(nèi),直線y=x+3與兩坐標(biāo)軸交于A、B兩點(diǎn),點(diǎn)O為坐標(biāo)原點(diǎn),若在該坐標(biāo)平面內(nèi)有以點(diǎn)P(不與點(diǎn)A、B、O重合)為頂點(diǎn)的直角三角形與Rt△ABO全等,且這個(gè)以點(diǎn)P為頂點(diǎn)的直角三角形與Rt△ABO有一條公共邊,則所有符合條件的P點(diǎn)個(gè)數(shù)為( )
A.9個(gè)
B.7個(gè)
C.5個(gè)
D.3個(gè)
【答案】分析:分別以直角三角形的一直角邊為公共邊,過直角邊的兩頂點(diǎn)作垂線,在此垂線上截取線段使線段的長(zhǎng)等于另一直角邊,連接此點(diǎn)與另一端點(diǎn)的連線即可;在以公共斜邊作直角三角形時(shí)要以AB為直徑作圓,再在圓上找出與A、B兩點(diǎn)的連線等于兩直角邊的點(diǎn)即可.
解答:解:如圖,圖中的P1、P2、P3、P4、P5、P6、P7,就是符合要求的點(diǎn)P,
注意以P1為公共點(diǎn)的直角三角形有3個(gè).?
故選B.
點(diǎn)評(píng):此題綜合考查一次函數(shù)的圖象與兩坐標(biāo)軸的交點(diǎn)的求法,直角三角形全等的判定.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2006年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(09)(解析版) 題型:解答題

(2006•哈爾濱)已知:二次函數(shù)y=ax2+bx+c的圖象與x軸交于A、B兩點(diǎn),其中點(diǎn)A的坐標(biāo)是(-1,0),與y軸負(fù)半軸交于點(diǎn)C,其對(duì)稱軸是直線x=,tan∠BAC=2.
(1)求二次函數(shù)y=ax2+bx+c的解析式;
(2)作圓O’,使它經(jīng)過點(diǎn)A、B、C,點(diǎn)E是AC延長(zhǎng)線上一點(diǎn),∠BCE的平分線CD交圓O’于點(diǎn)D,連接AD、BD,求△ACD的面積;
(3)在(2)的條件下,二次函數(shù)y=ax2+bx+c的圖象上是否存在點(diǎn)P,使得∠PDB=∠CAD?如果存在,請(qǐng)求出所有符合條件的P點(diǎn)坐標(biāo);如果不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006年黑龍江省哈爾濱市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2006•哈爾濱)已知:二次函數(shù)y=ax2+bx+c的圖象與x軸交于A、B兩點(diǎn),其中點(diǎn)A的坐標(biāo)是(-1,0),與y軸負(fù)半軸交于點(diǎn)C,其對(duì)稱軸是直線x=,tan∠BAC=2.
(1)求二次函數(shù)y=ax2+bx+c的解析式;
(2)作圓O’,使它經(jīng)過點(diǎn)A、B、C,點(diǎn)E是AC延長(zhǎng)線上一點(diǎn),∠BCE的平分線CD交圓O’于點(diǎn)D,連接AD、BD,求△ACD的面積;
(3)在(2)的條件下,二次函數(shù)y=ax2+bx+c的圖象上是否存在點(diǎn)P,使得∠PDB=∠CAD?如果存在,請(qǐng)求出所有符合條件的P點(diǎn)坐標(biāo);如果不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006年黑龍江省哈爾濱市中考數(shù)學(xué)試卷(解析版) 題型:填空題

(2006•哈爾濱)已知點(diǎn)O在直線AB上,且線段OA的長(zhǎng)度為4cm,線段OB的長(zhǎng)度為6cm,E、F分別為線段OA、OB的中點(diǎn),則線段EF的長(zhǎng)度為    cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006年黑龍江省哈爾濱市中考數(shù)學(xué)試卷(解析版) 題型:填空題

(2006•哈爾濱)觀察下列圖形:它們是按一定規(guī)律排列的,依照此規(guī)律,第8個(gè)圖形共有    枚五角星.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006年黑龍江省哈爾濱市中考數(shù)學(xué)試卷(解析版) 題型:選擇題

(2006•哈爾濱)已知圓O1與圓O2半徑的長(zhǎng)是方程x2-7x+12=0的兩根,且O1O2=,則圓O1與圓O2的位置關(guān)系是( )
A.相交
B.內(nèi)切
C.內(nèi)含
D.外切

查看答案和解析>>

同步練習(xí)冊(cè)答案