如圖(3)所示,矩形紙片中,,,現(xiàn)將其沿對折,使得點與點重合,則長為(   )
 
B
設(shè)AF=xcm,則DF=(8-x)cm,
∵矩形紙片ABCD中,AB=6cm,BC=8cm,現(xiàn)將其沿EF對折,使得點C與點A重合,
∴DF=D′F,
在Rt△AD′F中,∵AF2=AD′2+D′F2,
∴x2=62+(8-x) 2,
解得:x="25/4" (cm).
故選:B.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,四邊形ABCD中,AD∥BC,AF=CE,BE⊥AC于E,DF⊥AC于F.
試判斷DC與AB的位置關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在中,點、分別是、的中點.求證:.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,在四邊形中,是對角線的中點,E、 F分別是的中點,則的度數(shù)是         的度數(shù)是         

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖1,△ABD和△BDC都是邊長為1的等邊三角形。

(1)四邊形ABCD是菱形嗎?為什么?
(2)如圖2,將△BDC沿射線BD方向平移到△B1D1C1的位置,則四邊形ABC1D1      是平行四邊形嗎?為什么?
(3)在△BDC移動過程中,四邊形ABC1D1有可能是矩形嗎?如果是,請求出點B移動的距離(寫出過程);如果不是,請說明理由(圖3供操作時使用)。

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,在長為8 cm、寬為4 cm的矩形中,截去一個矩形,使得留下的矩形(圖中陰影部分)與原矩形相似,則留下矩形的面積是(  )
A.2 cm2B.4 cm2C.8 cm2D.16 cm2

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖所示,直角梯形ABCD中,AD∥BC,∠B=90°,AD=6,BC=8,AB=3,點M是BC的中點,點P從點M出發(fā)沿MB以每秒1個單位長的速度向點B勻速運動,到達點B后立刻以原速度沿BM返回;點Q從點M出發(fā)以每秒1個單位長的速度在射線MC上勻速運動,在點P、Q的運動過程中,以PQ為邊作等邊△EPQ,使它與梯形ABCD在射線BC的同側(cè),點P、Q同時出發(fā),點P返回到點M時停止運動,點Q也隨之停止,設(shè)點P、Q運動的時間是t秒(t>0)。

(1)設(shè)PQ的長為y,寫出y與t之間的函數(shù)關(guān)系式(寫出t的取值范圍)。
(2)當BP=1時,求△EPQ與梯形ABCD重疊部分的面積。
(3)隨著時間t的變化,線段AD會有一部分被△EPQ覆蓋,被覆蓋線段的長度在某個時刻會達到最大值,請回答:該最大值能否持續(xù)一個時段?若能,直接寫出t的取值范圍;若不能,請說明理由。

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

下列各命題都成立,而它們的逆命題不能成立的是(    ).
A.兩直線平行,同位角相等B.全等三角形的對應角相等
C.四邊相等的四邊形是菱形D.直角三角形中, 斜邊的平方等于兩直角邊的平方和

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在下列矩形ABCD中,已知:AB=a,BC=b(a<b),假定頂點在矩形邊上的菱形叫做矩形的內(nèi)接菱形,現(xiàn)給出(Ⅰ)、(Ⅱ)、(Ⅲ)三個命題:

命題(Ⅰ):圖①中,若AH=BG=AB,則四邊形ABGH是矩形ABCD的內(nèi)接菱形;
命題(Ⅱ):圖②中,若點E、F、G和H分別是AB、BC、CD和DE的中點,則四邊形EFGH是矩形ABCD的內(nèi)接菱形;
命題(Ⅲ):圖③中,若EF垂直平分對角線AC,變BC于點E,交AD于點F,交AC于點O,則四邊形AECF是矩形ABCD的內(nèi)接菱形.
請解決下列問題:
小題1:命題(Ⅰ)、(Ⅱ)、(Ⅲ)都是真命題嗎?請你在其中選擇一個,并證明它是真命題或假命題;
小題2:畫出一個新的矩形內(nèi)接菱形(即與你在(1)中所確認的,但不全等的內(nèi)接菱形).
小題3:試探究比較圖①,②,③中的四邊形ABGH、EFGH、AECF的面積大小關(guān)系

查看答案和解析>>

同步練習冊答案